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                                                ABSTRACT 

 
              In this project we propose to use Image Processing algorithms for 

the purpose of Object Recognition and Tracking and implement the same 

using an FPGA.  

                        

              In today’s world most sensing applications require some form of 

digital signal processing and these are implemented primarily on serial 

processors. While the required output is achievable, it can be beneficial to 

take advantage of the parallelism, low cost, and low power consumption 

offered by FPGAs (Spartan 3E). The Field Programmable Gate Array 

(FPGA) contains logic components that can be programmed to perform 

complex mathematical functions making them highly suitable for the 

implementation of matrix algorithms. 

 

              The individual frames acquired from the target video are fed into 

the FPGA. These are then subject to segmentation, thresholding and filtering 

stages. Following this the object is tracked by comparing the background 

frame and the processed updated frame containing the new location of the 

target. The results of the FPGA implementation in tracking a moving object 

were found to be positive and suitable for object tracking. 
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CHAPTER 1 

INTRODUCTION TO OBJECT TRACKING AND SYSTEM DESIGN 

 

1.1 OVERVIEW  

 

1.1.1 Basic Object Tracking      

Object tracking is the process of locating a moving object in time using a 

camera. The algorithm analyses the video frames and outputs the location of 

moving targets within the video frame. 

A few examples of established motion models are: 

• To track objects in a plane, the motion model is a 2D transformation 

of an image of the object (the initial frame) 

• When the target is a 3D object, the motion model defines its aspect 

depending on its 3D position and orientation 

• The image of deformable objects can be covered with a boundary box, 

the motion of the object is defined by the position of the nodes of the 

bounding box. 

The role of the tracking algorithm is to analyze the video frames in order 

to estimate the motion parameters. These parameters characterize the 

location of the target. They help identify several other factors such as 

average speed, number of direction changes, total time in motion and also 

information about the shape and size of the target. 
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1.1.2 Methods of Implementation 

The two major components of a visual tracking system – 

• Target Representation and Localization 

• Filtering and Data Association 

Target Representation and Localization is mostly a bottom-up process. 

Typically the computational complexity for these algorithms is low. The 

following are the common Target Representation and Localization 

algorithms: 

• Blob tracking: Segmentation of object interior (for example blob 

detection, block-based correlation). 

• Mean-shift tracking: An iterative localization procedure based on the 

maximization of a similarity measure. 

• Contour tracking: Detection of object boundary (e.g. Active Contours, 

Watershed Algorithm) 

• Visual feature matching: Registration 

Filtering and Data Association is mostly a top-down process, which 

involves incorporating prior information about the scene or object, dealing 

with object dynamics. The computational complexity for these algorithms is 

usually much higher. The following are some common Filtering and Data 

Association algorithms: 

• Kalman filter: An optimal recursive Bayesian filter for linear 

functions and Gaussian noise. 
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• Particle filter: Useful for sampling the underlying state-space 

distribution of non-linear and non-Gaussian processes. 

1.2 IMAGE PROCESSING SYSTEM         

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1: Layout of the Image Processing System 

 

1.2.1 System Environment 

 

Our aim is to work in an unstructured environment. An unstructured 

environment is one which has no artificial blue/green screen. This provides 

greater system flexibility and portability but can make reliable segmentation 

more difficult. As this environment requires the need to distinguish the 

objects of interest from any other objects that may be present within the 

frame. This limitation may be overcome by restricting the target objects to 

saturated and distinctive colors to enable them to be distinguished from the 

unstructured background. Augmenting the unstructured environment with 
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structured color in this way is a compromise that enables a much simpler 

segmentation algorithm to be used. Another method to maintain the color 

distribution is to keep the background environment a constant. This way, 

only the target is in motion and the system is able to track its motion in a 2-

D frame. 

 

1.2.2   Image Acquisition  

The image capture is performed using a color video camera which 

produces a stream of RGB pixels. The Casio camera is mounted on a tripod 

stand with a fixed Background that contains the object to be tracked. A brief 

5 – 10 second video is recorded in .avi format. The temporal resolution 

requirements of the application have to be considered. We require a lower 

resolution as it will have a significantly higher acquisition rate for the 

observation of faster events. The size of the video frame is set to 640x480 

pixels. 

The video obtained is read in the computer using Matlab. The software 

processes the entire video and converts it into Image frames at the rate of 10 

frames per second. Depending on the accuracy required and computational 

capability of the System, the frames can be interlaced. 

 

1.2.2.1 Frame Generation 

          

The video is fed in the Matlab program. The program reads the .avi file 

and converts it to frames. The frames are produced at the rate of 10 frames 

per second. Consider a 10 second video, a total of 100 frames will be 

produced in RGB format. These frames are then stored as individual bitmap 
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files (total of 100 files). The bitmap files are arranged in the order of their 

occurrence in the video. The first frame is selected as the Base – 

Background Frame. The remaining bitmap files are used for the process of 

Object Recognition and Tracking. 

 

              1.2.2.2 Background and Object Identification  

 

     It is important that the object needs to be differentiated from the 

background. The color elements must be eliminated and the recognition is 

done in gray scale. With a still environment, the background frame is 

selected as the first frame. Considering the 10 second video, the 50
th

 frame is 

randomly selected as the Object frame – these two frames form the basis for 

Object Recognition. It gives information about the shape and size of the 

object. 

 

1.3 ALGORITHM DESIGN FOR OBJECT RECOGNITION                

  

The following modules make up the Object Recognition stage: Grayscale 

Conversion, Delta Frame Generation, Thresholding, Noise Filtering and 

Image Enhancement. Figure 1.2 shows the Algorithm Flow. 

 

Figure 1.2: Object Recognition Algorithm Flow 
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1.3.1 Grayscale Conversion                   

The bitmap files have been generated and the Background and Object 

frame have been selected. These files are present in RGB format at a 

resolution of 640x480 pixels. These frames are then converted to grayscale 

within a range of 0-255. This reduces the coherent effect of the environment 

and allows us to easily separate the object from the background. 

 

1.3.2 Delta Frame Generation                           

Once the Gray Scale Conversion has been completed, the respective 

frames are subtracted from one another. The resulting frame is called the 

Delta Frame. This method of image subtraction eliminates the background 

and brings the object into focus, giving us information about its shape and 

size. The Delta frame also reduces the number of pixels that the system will 

have to process. 

 

1.3.3 Thresholding           

In order to further enhance the resolution of the delta frame Gray Scale 

Thresholding is done. Example – Figure 1.3. The individual pixels in the 

grayscale image are marked as object pixels if their value is greater than some 

threshold value (initially set as 80) and as background pixels otherwise.  

 

 

 

 

 

 

Figure 1.3: Gray Level Thresholding 



14 

In this case the object pixel is given a value of “1” while a background 

pixel is given a value of “0.” The thresholding can also be made adaptive when a 

different threshold is used for different regions in the image. The initial 

threshold value is set by considering the mean or median value. The approach is 

justified if the object pixels are brighter than the background. Else an iterative 

method has been implemented to obtain the value. The algorithm is as follows – 

 

1. An initial random threshold (T) is chosen. 

2. The image is segmented into object and background pixels using the 

above threshold. This creates two sets:  

1. G1 = {f(m,n):f(m,n)>T} (object pixels) 

2. G2 = {f(m,n):f(m,n) T} (background pixels) 

3. The average of each set is computed.  

1. m1 = average value of G1 

2. m2 = average value of G2 

4. A new threshold is created that is the average of m1 and m2  

1. T’ = (m1 + m2)/2 

 

1.3.4 Noise Filtering      

 

              The median filter is normally used to reduce noise in an image. The 

median filter is considered to do a better job than the mean filter of preserving 

useful detail in the image. The filter considers each pixel in the image in turn 

and looks at its nearby neighbors to decide whether or not it is representative of 

its surroundings. It then replaces the pixel value with the median of the 

neighboring pixel values. The median is calculated by first sorting all the pixel 

values from the surrounding neighborhood into numerical ascending order and 
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then replacing the pixel being considered with the middle pixel value. (If the 

neighborhood under consideration contains an even number of pixels, the 

average of the two middle pixel values is used.) An example is shown below - 

 

 

 

 

 

 

Figure 1.4: Example of Median Filter 

 

The main advantages of the median filter:  

• The median is a more robust average than the mean and so a single very 

unrepresentative pixel in a neighborhood will not affect the median value 

significantly.  

• Since the median value must actually be the value of one of the pixels in 

the neighborhood, the median filter does not create new unrealistic pixel 

values. Thus the median filter is much better at preserving sharp edges 

than the mean filter. 

 

          In general, the median filter allows a great deal of high spatial frequency 

detail to pass while remaining very effective at removing noise on images where 

less than half of the pixels in a smoothing neighborhood have been effected.  
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1.3.5 Image Enhancement      

 

              The aim of image enhancement is to improve the interpretability or 

perception of information about the object. We have designed a spatial domain 

method which operates directly on the pixels. The filtered image is subjected to 

Edge Detection by the use of Sobel Operators. The outer boundary of the object 

is acquired. This gives us a noise free output image containing only on the 

boundary. 

 

              This image is then superimposed on the Object frame which was 

originally selected. This produces the required Enhanced Image. The object can 

be easily recognized using the acquired representation and its shape and size can 

be approximated. 

  

1.4   OBJECT TRACKING       

 

1.4.1 Optimal Frame Rate   

    

The algorithm previously described helps identify the object and gives 

us information about its shape and size. Now in order to track it, we must 

select the frames acquired from the video. Considering a 10 second video, 

100 frames are produced. The frames are then fed into the Matlab program 

at the rate of 1 frame per second. This is under the impression that the rate 

that we choose contains the complete motion of the object. The optimal 

frame rate considered is 1 frame per second. Further complexity is reduced if 

we alter the input frame rate to 4 frames per second. 
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1.4.2 Determining the Objects Position    

          In most applications, the center of gravity is used for tracking the 

target as it is a geometric property of any object. The center of gravity is the 

average location of the weight of an object. It can be used to describe the 

motion of the object through space in terms of the translation of the point of 

the object from one place to another. 

In general, determining the center of gravity is a complicated 

procedure because the mass may not be uniformly distributed throughout the 

object. In order to simplify the problem we assume the object is composed 

of uniform material. We perform the preprocessing algorithms on the image 

to acquire a noise free enhanced image. An operator then scans the entire 

length of the image frame for the first white pixel. This is a clear indication 

of the 2D position of the object within that time frame. This is iterative 

process and it repeated over all the frames. 

1.4.3 Comparative Tracking      

 

The background frame is kept as the standard base. The following 

frames contain the updated location of the target. The optimal frame rate is 

chosen as previously explained. Each frame is fed into the program which 

subjects the frame to process of object recognition to achieve a noise free 

enhanced image containing only the object. 

 

              At the rate of 1 frame per second, the enhanced image is fed to the 

tracking program. This analyzes each frame and computes the first white 

pixel that represents the object. This is under the assumption that object is 
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made up of uniform material. This point is then plotted on a new image as 

the first position of the object. Subsequent frames are collected, subtracted 

from the background, filtered, enhanced and then the points are computed. 

The updated locations of the pixel points are collected to provide the 

approximate path taken by the object. The iterative program acquires the 

frames and plots the individual points – Object Path. 

 

1.5 MATLAB SIMULATION  

Figure1.5: Frame Generation using Matlab 
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       a) Gray Level Conversion                   b) Threshold 

 

 

 

 

 

 

 

c) Median Filter (Noise Removal)                        d) Edge Detection 

 

 

 

 

 

 

 

     e) Enhanced Image 

 

 

 

 

 

 

                         

Figure 1.6: Step-wise generation of Enhanced Image 
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Path of the Object Tracked 

Figure 1.7: Object Path obtained 
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CHAPTER 2 

FPGA IMPLEMENTATION OF OBJECT TRACKING 

ALGORITHM 

 

2.1 THE ADVANTAGE OF USING FPGAs   

Image processing is difficult to achieve on a serial processor. This is 

due to the large data set required to represent the image and the complex 

operations that need to be performed on the image. Consider video rates of 

25 frames per second, a single operation performed on every pixel of a 768 

by 576 color image (Standard PAL frame) equates to 33 million operations 

per second. Many image processing applications require that several 

operations be performed on each pixel in the image resulting in an even 

large number of operations per second. Thus the perfect alternative is to 

make use of an FPGA. Continual growth in the size and functionality of 

FPGAs over recent years has resulted in an increasing interest in their use 

for image processing applications. In a recent benchmarking test conducted 

by Berkeley Design Technology, Inc. (BDTi), the following results were 

acquired –  

 

 

 

 

 

 

 

 

Figure 2.1: Benchmarking Test conducted by BDTi 



22 

The main advantage of using FPGAs for the implementation of image 

processing applications is because their structure is able to exploit spatial 

and temporal parallelism. FPGA implementations have the potential to be 

parallel using a mixture of these two forms. For example, the FPGA could 

be configured to partition the image and distribute the resulting sections to 

multiple pipelines all of which could process data concurrently. Such 

parallelization is subject to the processing mode and hardware constraints of 

the system. 

 

Figure 2.2: Programmable Logic Blocks of an FPGA 

 

In Figure 2.2, an FPGA consists of a matrix of logic blocks that are 

connected by an interconnect network. Both the logic blocks and the 

interconnect network are reprogrammable allowing application specific 

hardware to be constructed, while at the same time maintaining the ability to 

change the functionality of the system with ease. As such, an FPGA offers a 

compromise between the flexibility of general purpose processors and the 

hardware-based speed of ASICs. 
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2.1.1 Hardware Constraints     

There are three modes of processing: stream, offline and hybrid 

processing. In stream processing, data is received from the input device in a 

raster nature at video rates. Memory bandwidth constraints dictate that as 

much processing as possible can be performed as the data arrives. In offline 

processing there is no timing constraint. This allows random access to 

memory containing the image data. The speed of execution in most cases is 

limited by the memory access speed. The hybrid case is a mixture of stream 

and offline processing. In this case, the timing constraint is relaxed so the 

image is captured at a slower rate. While the image is streamed into a frame 

buffer it can be processed to extract the region of interest. This region can be 

processed by an offline stage which would allow random access to the 

region’s elements. 

 

2.1.1.1 Timing Constraints 

If there is no requirement on processing time then the constraint on 

timing is relaxed and the system can revert to offline processing. This is 

often the result of a direct mapping from a software algorithm. The 

constraint on bandwidth is also eliminated because random access to 

memory is possible and desired values in memory can be obtained over a 

number of clock cycles with buffering between cycles. Offline processing in 

hardware therefore closely resembles the software programming paradigm; 

the designer need not worry about constraints to any great extent. This is the 

approach taken by languages that map software algorithms to hardware. The 

goal is to produce hardware that processes the input data as fast as possible 

given various automatic and manual optimization techniques. 
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2.1.1.2 Bandwidth Constraints 

Frame buffering requires large amounts of memory. The size of the 

frame buffer depends on the transform itself. In the worst case (rotation by 

90º, for example) the whole image must be buffered. A single 24-bit (8-bits 

per color channel) color image with 768 by 576 pixels requires 1.2 MB of 

memory. FPGAs have very limited amounts of on-chip RAM. The logic 

blocks themselves can be configured to act like RAM, but this is usually an 

inefficient use of the logic blocks. Typically some sort of off-chip memory is 

used but this only allows a single access to the frame buffer per clock cycle, 

which can be a problem for the many operations that require simultaneous 

access to more than one pixel from the input image. For example, bilinear 

interpolation requires simultaneous access to four pixels from the input 

image. This will be on a per clock cycle basis if real-time processing 

constraints are imposed.  

 

2.2 SPARTAN 3E (XC3S500E) FPGA   

 

2.2.1 Overview of Features and Layout 

The Spartan-3E FPGA is embedded with the 90nm technology at the 

heart of its architecture. This reduces the die size and cost, increases 

manufacturing efficiency, and addresses a wider range of applications. You 

can integrate embedded processing, digital signal processing (DSP), and 

connectivity capabilities into Spartan-3E devices at no extra cost. These are 

supported with customized tools (ISE and EDK), JTAG probes, IP cores, 

design services, and training. The Spartan-3E diagram shown in Figure 2.3 

allows users to easily migrate to different densities across multiple packages 

and supports 18 different single-ended and differential I/O standards.  
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Figure 2.3: Spartan 3E Layout 

 

The main advantages are High Speed Connectivity, High Performance DSP 

Solutions and Lowest Cost Embedded Processing Solutions. 

 

1. High Speed Connectivity 

System connectivity consists of physical parallel I/O interfaces and the 

protocols required for higher bandwidth. The Spartan-3E device I/O pins 

support full functionality for fast, flexible electrical interfaces. The PCI- 

Express slots are 100 MHz compatible. Also there are 18 I/O standards, 

DDR I/O registers, DCMs. 

 

2. High Performance DSP Solutions 

Spartan-3E FPGAs help you efficiently build DSP solutions that handle. Up 

to 9.1 billion multiply and accumulates (MACs) per second. There are up to 

36, 18x18 embedded multipliers for implementing compact DSP structures 
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such as MAC engines, and adaptive and fully parallel FIR filters. The Block 

RAM can be used for storing partial products and coefficients. 

 

3. Lowest Cost Embedded Processing Solutions 

The effective fractional cost of incorporating the MicroBlaze™ (32-bit soft 

processor) into a Spartan-3E FPGA is very less. The Xilinx MicroBlaze with 

Spartan-3E FPGA (Figure 2.4) can be used to integrate the entire processing 

engine, all control functions, and additional supporting logic into a single 

cost-effective platform. The Embedded Development Kit (EDK) offers a 

common development environment for Spartan Series FPGAs with 

MicroBlaze. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4: Spartan 3E Starter Kit 
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2.3 DEVELOPMENT TOOLS     

 

2.3.1 Xilinx Embedded Development Kit 8.1i 

 

              The FPGA/FPGA chip is supported with a complete set of software 

and hardware development tools - Xilinx Embedded Development Kit 

(EDK) and Xilinx Platform Studio (XPS) tools development software. This 

tool is used to create a simple processor system. The microprocessors 

available for use in Xilinx Field Programmable Gate Arrays (FPGAs) with 

Xilinx EDK software tools can be broken down into two broad categories. 

There are soft-core microprocessors (MicroBlaze) and the hard-core 

embedded microprocessor (PowerPC).  

 

EDK uses Intellectual-Property Interface (IPIF) library to implement 

common functionality among various processor peripherals. It is verified, 

optimized and highly parameterizable. It also gives you a set of simplified 

bus protocol called IP Interconnect (IPIC). Using the IPIF module with 

parameterization that suits your needs will greatly reduce your design and 

test effort because you don’t have to re-invent the wheel. This is done in 

EDK with a wizard that walks you through the entire process.  

 

2.3.2 MicroBlaze – Virtual Microprocessor   

 

The MicroBlaze is a virtual microprocessor that is built by combining 

blocks of code called cores. MicroBlaze is an embedded soft core that 

includes the following features: 
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• Thirty-two 32-bit general purpose registers. 

• 32 bit instruction word with three operands and two addressing 

modes. 

• Separate 32-bit instruction and data buses that conform to IBM's OPB 

(On-chip Peripheral Bus) specification. 

• 32-bit address bus  

• Single issue pipeline 

The MicroBlaze is a full 32-bit RISC CPU that is embedded in the Xilinx 

FPGA SPARTAN 3E and Virtex-4 FPGA families. It can be run at speeds 

up to 100MHz and is the best choice for CPU-intensive tasks in Xilinx 

FPGA based systems.  

 

2.4 ALGORITHM MAPPING     

 

              The FPGA implementation is divided into blocks, each block 

implementing a separate portion of the algorithm. This approach allowed for 

concurrent development and for testing of individual blocks. The inbuilt 

finite state machine (FSM) controls each block. In addition, a high-level 

FSM controls the interaction of the blocks. Each computational block is 

implemented in C and checked for proper functionality with simulators (ISE 

Simulator) 

 

The Algorithm primarily consists on mapping low-level operations 

like local filters. Conceptually, each pixel in the output image is produced by 

sliding an N×N window over the input image and computing an operation 

according to the input pixels under the window and the chosen window 
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operator. The result is a pixel value that is assigned to the centre of the 

window in the output image as shown below in Figure 2.5. 

 

 

 

 

 

 

 

 

 

 

Figure 2.5: Mapping the Window Operation 

 

For processing purposes, the straightforward approach is to store the 

entire input image into a frame buffer, accessing the neighborhood pixels 

and applying the function as needed to produce the output image. If 

processing of the video stream is required N×N pixel values are needed to 

perform the calculations each time the window is moved and each pixel in 

the image is read up to N×N times. Memory bandwidth constraints make 

obtaining all these pixels each clock cycle impossible. Input data from the 

previous N-1 rows can be cached using a shift register (or circular memory 

buffer) for when the window is scanned along subsequent lines.  

 

Instead of sliding the window across the image, the above 

implementation now feeds the image through the window. Introducing the 

row buffer data structures adds additional complications. With the use of 
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both caching and pipelining there needs to be a mechanism for adding to the 

row buffer and for flushing the pipeline. This is required when operating on 

video data, due to the horizontal blanking between lines and the vertical 

blanking between frames. If either the buffer or the pipeline operated during 

the blanking periods the results for following pixels would be incorrect due 

to invalid data being written to them. This requires us to stop entering data 

into the row buffers and to stall the pipeline while a blanking period occurs. 

A better option is to replicate the edge pixels of the closest border. Such 

image padding can be considered as a special case of pipeline priming. 

When a new frame is received the first line is pre-loaded into the row buffer 

the required number of times for the given window size. Before processing a 

new row the first pixels are also pre-loaded the required number of times, as 

is the last pixel of the line and the last line. Figure 2.6 shows the 

implementation of the Row Buffers for Window Operations. 

 

 

 

 

 

 

 

 

 

 

                    

 

Figure 2.6: Window Operation using Buffers 
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2.4.1 Memory Interfacing and C Compiler  

 

              Because the Spartan 3E FPGA that is used in the design does not 

have enough internal RAM for image storage, the processing blocks were 

interfaced with five on-board 256K×36-bit pipelined DDRAM devices. To 

reduce the hardware computation time, each sub-block can read and write 

within the same clock cycle; each sub-block was connected to two memory 

chips while active. Typically, a computational block reads its inputs from 

one memory and writes its outputs to another. It is also necessary to 

control/arbitrate the FPGA internal block RAM, which is used for storage of 

computed thresholds and other parameters. The memory interface provides 

the computational blocks with a common interface and hides some of the 

complex details. 

 

2.4.1.1 C Compiler 

              Xilinx MicroBlaze Processor Supports Linux and C-to-FPGA 

Acceleration Embedded systems can be developed to create hardware-

accelerated, single-chip applications that take advantage of the MicroBlaze 

processor features and C-to-hardware acceleration for complex, 

performance-critical applications. The addition of memory management to 

the MicroBlaze processor provides embedded systems designers with a 

powerful new alternative for hardware-accelerated embedded systems. By 

offloading critical C-language processes to dedicated hardware 

coprocessors, the system as a whole can operate at a slower clock speed, 

consume less power and yet provide vastly more processing performance 

than would be possible using a discrete processor. 



32 

Using the automated C-to-hardware compiler tools and interactive 

optimizers, performance gains well in excess of 100X over software-only 

approaches, in applications that include image processing, DSP and secure 

communications have been reported. 

 

              The MicroBlaze configurable soft processor includes configurable 

coprocessor capabilities through its high-performance Fast Simplex Link 

(FSL) accelerator interface. The compiler automatically parallelizes and 

pipelines C-language algorithm and generates FSL interfaces, with little or 

no need for hardware design experience or hardware description language 

(HDL) coding. The automatic C-to-HDL capabilities of Microblaze 

dramatically accelerate system design. 

 

2.4.1.2 Program Files   

 

Input Files 

1. MHS File 

The Microprocessor Hardware Specification (MHS) file defines the 

hardware component. The MHS file serves as an input to the Platform 

Generator (Platgen) tool. An MHS file defines the configuration of the 

embedded processor system, and includes the following: 

• Bus architecture 

• Peripherals 

• Processor 

• System Connectivity 
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2. MSS File 

The Microprocessor Software Specification (MSS) is used as an input file 

to the Library Generator (Libgen). The MSS file contains directives for 

customizing OSs, libraries, and drivers. 

 

3. UCF File 

The User Constraints File (UCF) specifies timing and placement 

constraints for the FPGA Design. 

 

Output Files 

     1.  Block Memory Map 

A BMM file is a text file that has syntactic descriptions of how 

individual Block RAMs constitute a contiguous logical data space. When 

updating the FPGA bitstream with memory initialization data, the 

Data2Mem utility uses the BMM file to direct the translation of data into the 

proper initialization form. This file is generated by the Platform Generator 

(Platgen) and updated with physical location information by the Bitstream 

Generator tool.  

 

2. ELF File 

The Executable and Linkable Format (ELF) is a common standard in 

computing. An executable or executable file, in computer science, is a file 

whose contents are meant to be interpreted as a program by a computer. 

Most often, they contain the binary representation of machine instructions of 

a specific processor, but can also contain an intermediate form that requires  

the services of an interpreter to be run. 
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Figure 2.7: Synthesized Block Diagram 
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2.5 SIMULATION     

 

2.5.1 Hyper Terminal 

The pixels generated through the FPGA are viewed using Matlab. The pixel 

values are displayed using a Hyper Terminal Connection. The interface can 

be established by appropriately setting the baud rate and COM port. The 

pixels obtained are copied to a text file which is read by Matlab. The 

program converts the text file to the required image. Figure 2.8 shows 

Images obtained from the pixel values computed using the FPGA. 

 

       a) Threshold      b) Noise Filter 

 

 

 

 

 

 

 

  c) Edge Detection          d) Enhanced Image 

 

 

 

 

 

 

 

2.8 Text File converted to Image in Matlab 



36 

Object Path Obtained 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.9: Pixel Values obtained from FPGA plotted using Matlab 
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CHAPTER 3 

CONCLUSION 

 

 Object identification and tracking requires the use of an efficient 

signal processing system. Although video processing is achievable on serial 

processors, it can be beneficial to take advantage of the parallelism, low 

cost, and low power consumption offered by FPGAs. The successful 

implementation of this image processing algorithm illustrates that the digital 

signal processing required for high rate sensing application can be efficiently 

implemented on FPGA hardware.  

 

  The gray scale transformation has been used to remove the coherence 

of the background and the target to be tracked. The Delta Frame-based 

segmentation and Thresholding combine two intensive operations into one 

step, eliminating the need for large numbers of parallel comparators. The 

resulting optimized enhanced image fits on a small FPGA, such as the Xilinx 

Spartan- III XC3S500E, with sufficient resources available for an 

application to make use of the derived tracking information. We have 

demonstrated this by designing a simple video which contains an object in 

motion. 

 

 When we compare the outputs obtained from Matlab and FPGA, we 

find the outputs obtained using the Spartan 3E kit are computationally 

efficient. The pixel values are scaled and the outputs are comparable to the 

ones obtained using Matlab. 
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APPENDIX 1 

 

Pseudo Code for Object Tracking C Program 

 

//Median Function 

Module FindMedian( Values ) 

Start 

Sort the Values 

If CountOf(Values) Is Even 

 Return Mean(Middle Two Values) 

Else 

 Return Middle Value 

End 

 

Module MainProgram 

Start 

//Initialize the variables 

Initialize MatVal, MatVal1, IntVal, IntVal1 To 0 

Initialize cp To 0x25000000 

Initialize cp1 To 0x25100000 

Initialize NoOfRows,NoOfColumns To 128 

Initialize NoOfRows1, NoOfColumns1 To 120 

//Read 1
st
 Input 

For I = 0 To NoOfRows 

 For J = 0 To NoOfColumns 

  While( True ) 

   If Ch Ranges from 0 to 9 Then    
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    MatVal = (MatVal * 10) + Ch 

   Else If 

    RedB[i][j] = MatVal; 

    MatVal = 0 

    Increment cp 

If Ch is NewLine or IntVal Is 010 Or 020 Or 

003 Or 032 Then 

     Increment cp 

    End If 

    Break Out Of While Loop 

   End If 

  End While 

  Increment cp  

 End For 

 Input[i][j] = RedB[i][j] 

End For 

//Read 2
nd

 Input 

For I = 0 To NoOfRows1 

 For J = 0 To NoOfColumns1 

  While( True ) 

   If Ch1 Ranges from 0 to 9 Then    

    MatVal1 = (MatVal1 * 10) + Ch 

   Else If 

    RedB1[i][j] = MatVal1; 

    MatVal1 = 0 

    Increment cp1 
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If Ch1 is NewLine Or IntVal1 Is 010 Or 020 

Or 003 Or 032 Then 

     Increment cp1 

    End If 

    Break Out Of While Loop 

   End If 

  End While 

  Increment cp1 

 End For 

 Input1[i][j] = RedB1[i][j]  

End For 

//Delta Frame Generation 

For I = 0 To NoOfRows 

 For J = 0 To NoOfColumns 

  Seg[i][j] = Input[i][j] - Input1[i][j] 

  If Seg[i][j] > 20 Then 

   Seg1[i][j] = 255 

  Else 

   Seg1[i][j] = 0 

  End If 

 End For 

End For 

//Median Filter 

For I = 0 To NoOfRows 

 For J = 0 To NoOfColumns 

  If Not Any Edge Or Corner Then 

   bbr = Median( All the Values In Seg1 )   
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  End If 

  FirstFilter[i][j] = bbr 

 End For 

End For 

//Thresholding 

For I = 0 To NoOfRows 

 For J = 0 To NoOfColumns 

  If FirstFilter[i][j] > 40 Then 

   FirstFilter[i][j] = 255 

  Else  

   FirstFilter[i][j] = 0 

  End If 

  EdgeImage[i][j] = 255 

 End For 

End For 

//Edge Detection 

For I = 0 To NoOfRows 

 For J = 0 To NoOfColumns 

  If I == 0 And J == 0 Then 

If FirstFilter[j][i+1] And FirstFilter[j+1][i+1] And 

FirstFilter[j+1][i] Are Equal To 255 Then 

     EdgeImage[j][i] = 0 

  End If 

  Else If I == 0 And J == Length Then 

If FirstFilter[j+1][i] And FirstFilter[j+1][i-1] And 

FirstFilter[j][i-1] Are Equal To 255 Then 

    EdgeImage[j][i] = 0 
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   End If 

  Else If I == Length And J == 0 Then 

If FirstFilter[j-1][i] And FirstFilter[j-1][i+1] And 

FirstFilter[j][i+1] Are Equal To 255 Then 

    EdgeImage[j][i] = 0 

   End If 

  Else If I == Length And J == Length Then 

If FirstFilter[j-1][i-1] And FirstFilter[j][i-1] And 

FirstFilter[j-1][i] Are Equal To 255 Then 

    EdgeImage[j][i] = 0 

   End If 

  Else If I == 0 And J == Length Then 

If FirstFilter[j+1][i] And FirstFilter[j+1][i-1] And 

FirstFilter[j][i-1] Are Equal To 255 Then 

    EdgeImage[j][i] = 0 

   End If 

  Else If I == 1 

If FirstFilter[j][i-1] And FirstFilter[j+1][i-1] And 

FirstFilter[j+1][i] And FirstFilter[j+1][i+1] And 

FirstFilter[j][i+1] Are Equal To 255 Then 

    EdgeImage[j][i] = 0 

   End If 

  Else If I == Length 

If FirstFilter[j-1][i-1] And FirstFilter[j+1][i-1] And 

FirstFilter[j+1][i] And FirstFilter[j-1][i] And 

FirstFilter[j][i-1] Are Equal To 255 Then 

    EdgeImage[j][i] = 0 
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   End If 

  Else If J == 1 

If FirstFilter[j][i-1] And FirstFilter[j-1][i-1] And 

FirstFilter[j-1][i] And FirstFilter[j-1][i+1] And 

FirstFilter[j][i+1] Are Equal To 255 Then 

    EdgeImage[j][i] = 0 

   End If 

   Else 

If FirstFilter[j-1][i-1] And FirstFilter[j+1][i-1] And 

FirstFilter[j+1][i] And FirstFilter[j+1][i+1] And 

FirstFilter[j][i-1] And FirstFilter[j-1][i] Are Equal To 255 

Then 

    EdgeImage[j][i] = 0 

   End If 

  End If 

 End For 

End For 

//Image Enhancement and Object Tracking 

For I = 0 To NoOfRows 

 For J = 0 To NoOfColumns 

  Seg[i][j] = Input[i][j] - Input1[i][j] 

  If Seg[i][j] = 1 Then 

   Store [i],[j] 

  End If 

 End For 

End For 

End 



44 

APPENDIX 2 

 

Development Tools: Microblaze Virtual Microprocessor 

 

              The MicroBlaze core is organized as a Harvard architecture with 

separate bus interface units for data accesses and instruction accesses. 

MicroBlaze does not separate between data accesses to I/O and memory (i.e. 

it uses memory mapped I/O). The processor has up to three interfaces for 

memory accesses: Local Memory Bus (LMB), IBM’s On-chip Peripheral 

Bus (OPB), and Xilinx Cache Link (XCL). The LMB provides single-cycle 

access to on-chip dual-port block RAM (BRAM). The OPB interface 

provides a connection to both on-chip and off-chip peripherals and memory. 

The CacheLink interface is intended for use with specialized external 

memory controllers. MicroBlaze also supports up to 8 Fast Simplex Link 

(FSL) ports, each with one master and one slave FSL interface. The FSL is a 

simple, yet powerful, point-to-point interface that connects user developed 

custom hardware accelerators (co-processors) to the MicroBlaze processor 

pipeline to accelerate time-critical algorithms. 

 

              The backbone of the architecture is a single-issue, 3-stage pipeline 

with 32 general-purpose registers, an Arithmetic Logic Unit (ALU), a shift 

unit, and two levels of interrupt. This basic design can then be configured 

with more advanced features to tailor to the exact needs of the target 

embedded application such as: barrel shifter, divider, multiplier, single 

precision floating-point unit (FPU), instruction and data caches, exception 

handling, debug logic, Fast Simplex Link (FSL) interfaces and others. This 
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flexibility allows the user to balance the required performance of the target 

application against the logic area cost of the soft processor.  

 

The items in white are the backbone of the MicroBlaze architecture while 

the items shaded gray are optional features available depending on the exact 

needs of the target embedded application. Because MicroBlaze is a soft-core 

microprocessor, any optional features not used will not be implemented and 

will not take up any of the FPGAs resources.  

 

Instruction Operations:  

              The MicroBlaze pipeline is a parallel pipeline, divided into three 

stages: Fetch, Decode, and Execute. In general, each stage takes one clock 

cycle to complete. Consequently, it takes three clock cycles (ignoring delays 
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or stalls) for the instruction to complete. Each stage is active on each clock 

cycle so three instructions can be executed simultaneously, one at each of 

the three pipeline stages. MicroBlaze implements an Instruction Prefetch 

Buffer that reduces the impact of multi-cycle instruction memory latency. 

While the pipeline is stalled by a multi-cycle instruction in the execution 

stage the Instruction Prefetch Buffer continues to load sequential 

instructions. Once the pipeline resumes execution the fetch stage can load 

new instructions directly from the Instruction Prefetch Buffer rather than 

having to wait for the instruction memory access to complete. The 

Instruction Prefetch Buffer is part of the backbone of the MicroBlaze 

architecture and is not the same thing as the optional instruction cache.  

 

Stack: 

              The stack convention used in MicroBlaze starts from a higher 

memory location and grows downward to lower memory locations when 

items are pushed onto a stack with a function call. Items are popped off the 

stack the reverse order they were put on; item at the lowest memory location 

of the stack goes first and etc. 

 

Registers: 

              The MicroBlaze processor also has special purpose registers such 

as: Program Counter (PC) can read it but cannot write to it, Machine Status 

Register (MSR) to indicate the status of the processor such as indicating 

arithmetic carry, divide by zero error, a Fast Simplex Link (FSL) error and 

enabling/disabling interrupts to name a few. An Exception Address Register 

(EAR) that stores the full load/store address that caused the exception. An 

Exception Status register (ESR) that indicates what kind of exception 
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occurred. A Floating Point Status Register (FSR) to indicate things such as 

invalid operation, divide by zero error, overflow, underflow and 

denormalized operand error of a floating point operation. 

 

Interrupts: 

 

              MicroBlaze also supports reset, interrupt, user exception, break and 

hardware exceptions. For interrupts, MicroBlaze supports only one external 

interrupt source (connecting to the Interrupt input port). If multiple interrupts 

are needed, an interrupt controller must be used to handle multiple interrupt 

requests to MicroBlaze. An interrupt controller is available for use with the 

Xilinx Embedded Development Kit (EDK) software tools. The processor 

will only react to interrupts if the Interrupt Enable (IE) bit in the Machine 

Status Register (MSR) is set to 1. On an interrupt the instruction in the 

execution stage will complete, while the instruction in the decode stage is 

replaced by a branch to the interrupt vector (address 0x10). The interrupt 

return address (the PC associated with the instruction in the decode stage at 

the time of the interrupt) is automatically loaded into general-purpose 

register R14. In addition, the processor also disables future interrupts by 

clearing the IE bit in the MSR. The IE bit is automatically set again when 

executing the RTID instruction. 

 

C Compiler: 

              Writing software to control the MicroBlaze processor must be done 

in C/C++ language. Using C/C++ is the preferred method by most people 

and is the format that the Xilinx Embedded Development Kit (EDK) 

software tools expect. The EDK tools have built in C/C++ compilers to 

generate the necessary machine code for the MicroBlaze processor. 
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EDK Interface: 

              The MicroBlaze processor is useless by itself without some type of 

peripheral devices to connect to and EDK comes with a large number of 

commonly used peripherals. Many different kinds of systems can be created 

with these peripherals, but it is likely that you may have to create your own 

custom peripheral to implement functionality not available in the EDK 

peripheral libraries and use it in your processor system.  

 
              The processor system by EDK is connected by On-chip Peripheral 

Bus (OPB) and/or Processor Local Bus (PLB), so your custom peripheral 

must be OPB or PLB compliant. Meaning the top-level module of your 

custom peripheral must contain a set of bus ports that is compliant to OPB or 

PLB protocol, so that it can be attached to the system OPB or PLB bus. 
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