
1

 IMPLEMENTATION OF FPGA-BASED OBJECT

TRACKING ALGORITHM

A PROJECT REPORT

Submitted by

 G. SHRIKANTH (21904106079)

 KAUSHIK SUBRAMANIAN (21904106043)

in partial fulfillment for the award of the degree

of

BACHELOR OF ENGINEERING

In

 ELECTRONICS AND COMMUNICATION ENGINEERING

 SRI VENKATESWARA COLLEGE OF ENGINEERING,

SRIPERUMBUDUR

 ANNA UNIVERSITY: CHENNAI 600 025

APRIL 2008

2

 ANNA UNIVERSITY: CHENNAI 600 025

BONAFIDE CERTIFICATE

Certified that this project report “IMPLEMENTATION OF FPGA-BASED

OBJECT TRACKING ALGORITHM” is the bonafide work of “KAUSHIK

SUBRAMANIAN (21904106043) AND G. SHRIKANTH (21904106079)” who

carried out the project work under my supervision.

 SIGNATURE SIGNATURE

 Prof. R. Narayanan Mr. N. Venkateswaran

 Head of the Department SUPERVISOR

 Department of Electronics and Assistant Professor

 Communication Engineering Department of Electronics and

 Sri Venkateswara College of Communication Engineering

 Engineering, Pennalur, Sri Venkateswara College of

 Sriperumbudur - 602105 Engineering, Pennalur,

 Sriperumbudur - 602105

 EXTERNAL INTERNAL

 EXAMINAR EXAMINAR

3

ACKNOWLEDGEMENT

We are personally indebted to a number of people who gave us their useful

insights to aid in our overall progress for this project. A complete

acknowledgement would therefore be encyclopedic. First of all, we would

like to give our deepest gratitude to our parents for permitting us to take up

this course.

Our sincere thanks and heartfelt sense of gratitude goes to our respected

Principal, Dr. R. Ramachandran for all his efforts and administration in

educating us in his premiere institution. We take this opportunity to also

thank our Head of the Department, Prof. R. Narayanan for his

encouragement throughout the project.

We would like to express our gratitude to our Internal Coordinator, Prof.

Ganesh Vaidyanathan for his commendable support and encouragement

for the completion of our project with perfection.

We also convey our sincere thanks to our internal guide, Prof. N

Venkateswaran for his invaluable suggestions throughout the project and

for his technical support rendered during the course of our project.

4

 ABSTRACT

 In this project we propose to use Image Processing algorithms for

the purpose of Object Recognition and Tracking and implement the same

using an FPGA.

 In today’s world most sensing applications require some form of

digital signal processing and these are implemented primarily on serial

processors. While the required output is achievable, it can be beneficial to

take advantage of the parallelism, low cost, and low power consumption

offered by FPGAs (Spartan 3E). The Field Programmable Gate Array

(FPGA) contains logic components that can be programmed to perform

complex mathematical functions making them highly suitable for the

implementation of matrix algorithms.

 The individual frames acquired from the target video are fed into

the FPGA. These are then subject to segmentation, thresholding and filtering

stages. Following this the object is tracked by comparing the background

frame and the processed updated frame containing the new location of the

target. The results of the FPGA implementation in tracking a moving object

were found to be positive and suitable for object tracking.

5

 TABLE OF CONTENTS

CHAPTER NO. TITLE PAGE NO.

 ABSTRACT iv

 LIST OF FIGURES vii

1. INTRODUCTION TO OBJECT TRACKING AND

SYSTEM DESIGN 1

 1.1 OVERVIEW

1.1.1 Basic Object Tracking 1

1.1.2 Methods of Implementation 2

 1.2 IMAGE PROCESSING SYSTEM 3

1.2.1 System Environment 3

 1.2.2 Image Acquisition 4

 1.2.2.1 Frame Generation 4

1.2.2.2 Background and Object

Identification 5

1.3 ALGORITHM DESIGN FOR OBJECT

RECOGNITION 5

1.3.1 Grayscale Conversion 6

1.3.2 Delta Frame Generation 6

1.3.3 Thresholding 6

1.3.4 Noise Filtering 7

1.3.5 Image Enhancement 9

6

 1.4 OBJECT TRACKING 9

1.4.1 Optimal Frame Rate 9

1.4.2 Determining the Objects Position 10

1.4.3 Comparative Tracking 10

 1.5 MATLAB SIMULATION 11

 2. FPGA IMPLEMENTATION OF OBJECT

TRACKING ALGORITHM 14

2.1 THE ADVANTAGE OF USING FPGAs 14

 2.1.1 Hardware Constraints 16

 2.1.1.1 Timing Constraints 16

 2.1.1.2 Bandwidth Constraints 17

 2.2 SPARTAN 3E STARTER BOARD 17

2.2.1 Overview of Features and Layout 17

 2.3 DEVELOPMENT TOOLS 20

2.3.1 Xilinx Embedded Development Kit 8.1i 20

2.3.2 Microblaze – Virtual Microprocessor 20

 2.4 ALGORITHM MAPPING 21

2.4.1 Memory Interfacing and C Compiler 24

2.4.1.1 C Compiler 24

2.4.1.2 Program Files 25

2.5 SIMULATION 28

2.5.1 Hyper Terminal 28

3. CONCLUSIONS 30

 APPENDIX 1 31

 APPENDIX 2 37

 REFERENCES 42

7

 LIST OF FIGURES

CHAPTER

 NO.

 TITLE

 PAGE

 NO.

 1.

INTRODUCTION

1.1 Layout of the Image processing system

 1.2 Object Recognition Algorithm Flow

1.3 Gray Level Thresholding

1.4 Example of Median Filter

1.5 Frame Generation using Matlab

1.6 Step-wise generation of Enhanced Image

1.7 Object Path obtained

 3

 5

 6

 8

 11

 12

 13

 2.

FPGA IMPLEMENTATION

 2.1 Benchmarking Test conducted by BDTi

 2.2 Programmable Logic Blocks of an FPGA

 2.3 Spartan-3E Layout

 2.4 Spartan-3E Starter kit

 2.5 Mapping the Sliding Window Operation

 2.6 Window Operation using Buffers

 2.7 System Block Diagram

 2.8 Text File converted to Image in Matlab

 2.9 Pixel Values obtained from FPGA plotted

using Matlab

 14

 15

 18

 19

 22

 23

 27

 28

 29

8

CHAPTER 1

INTRODUCTION TO OBJECT TRACKING AND SYSTEM DESIGN

1.1 OVERVIEW

1.1.1 Basic Object Tracking

Object tracking is the process of locating a moving object in time using a

camera. The algorithm analyses the video frames and outputs the location of

moving targets within the video frame.

A few examples of established motion models are:

• To track objects in a plane, the motion model is a 2D transformation

of an image of the object (the initial frame)

• When the target is a 3D object, the motion model defines its aspect

depending on its 3D position and orientation

• The image of deformable objects can be covered with a boundary box,

the motion of the object is defined by the position of the nodes of the

bounding box.

The role of the tracking algorithm is to analyze the video frames in order

to estimate the motion parameters. These parameters characterize the

location of the target. They help identify several other factors such as

average speed, number of direction changes, total time in motion and also

information about the shape and size of the target.

9

1.1.2 Methods of Implementation

The two major components of a visual tracking system –

• Target Representation and Localization

• Filtering and Data Association

Target Representation and Localization is mostly a bottom-up process.

Typically the computational complexity for these algorithms is low. The

following are the common Target Representation and Localization

algorithms:

• Blob tracking: Segmentation of object interior (for example blob

detection, block-based correlation).

• Mean-shift tracking: An iterative localization procedure based on the

maximization of a similarity measure.

• Contour tracking: Detection of object boundary (e.g. Active Contours,

Watershed Algorithm)

• Visual feature matching: Registration

Filtering and Data Association is mostly a top-down process, which

involves incorporating prior information about the scene or object, dealing

with object dynamics. The computational complexity for these algorithms is

usually much higher. The following are some common Filtering and Data

Association algorithms:

• Kalman filter: An optimal recursive Bayesian filter for linear

functions and Gaussian noise.

10

• Particle filter: Useful for sampling the underlying state-space

distribution of non-linear and non-Gaussian processes.

1.2 IMAGE PROCESSING SYSTEM

Figure 1.1: Layout of the Image Processing System

1.2.1 System Environment

Our aim is to work in an unstructured environment. An unstructured

environment is one which has no artificial blue/green screen. This provides

greater system flexibility and portability but can make reliable segmentation

more difficult. As this environment requires the need to distinguish the

objects of interest from any other objects that may be present within the

frame. This limitation may be overcome by restricting the target objects to

saturated and distinctive colors to enable them to be distinguished from the

unstructured background. Augmenting the unstructured environment with

11

structured color in this way is a compromise that enables a much simpler

segmentation algorithm to be used. Another method to maintain the color

distribution is to keep the background environment a constant. This way,

only the target is in motion and the system is able to track its motion in a 2-

D frame.

1.2.2 Image Acquisition

The image capture is performed using a color video camera which

produces a stream of RGB pixels. The Casio camera is mounted on a tripod

stand with a fixed Background that contains the object to be tracked. A brief

5 – 10 second video is recorded in .avi format. The temporal resolution

requirements of the application have to be considered. We require a lower

resolution as it will have a significantly higher acquisition rate for the

observation of faster events. The size of the video frame is set to 640x480

pixels.

The video obtained is read in the computer using Matlab. The software

processes the entire video and converts it into Image frames at the rate of 10

frames per second. Depending on the accuracy required and computational

capability of the System, the frames can be interlaced.

1.2.2.1 Frame Generation

The video is fed in the Matlab program. The program reads the .avi file

and converts it to frames. The frames are produced at the rate of 10 frames

per second. Consider a 10 second video, a total of 100 frames will be

produced in RGB format. These frames are then stored as individual bitmap

12

files (total of 100 files). The bitmap files are arranged in the order of their

occurrence in the video. The first frame is selected as the Base –

Background Frame. The remaining bitmap files are used for the process of

Object Recognition and Tracking.

 1.2.2.2 Background and Object Identification

 It is important that the object needs to be differentiated from the

background. The color elements must be eliminated and the recognition is

done in gray scale. With a still environment, the background frame is

selected as the first frame. Considering the 10 second video, the 50
th

 frame is

randomly selected as the Object frame – these two frames form the basis for

Object Recognition. It gives information about the shape and size of the

object.

1.3 ALGORITHM DESIGN FOR OBJECT RECOGNITION

The following modules make up the Object Recognition stage: Grayscale

Conversion, Delta Frame Generation, Thresholding, Noise Filtering and

Image Enhancement. Figure 1.2 shows the Algorithm Flow.

Figure 1.2: Object Recognition Algorithm Flow

13

1.3.1 Grayscale Conversion

The bitmap files have been generated and the Background and Object

frame have been selected. These files are present in RGB format at a

resolution of 640x480 pixels. These frames are then converted to grayscale

within a range of 0-255. This reduces the coherent effect of the environment

and allows us to easily separate the object from the background.

1.3.2 Delta Frame Generation

Once the Gray Scale Conversion has been completed, the respective

frames are subtracted from one another. The resulting frame is called the

Delta Frame. This method of image subtraction eliminates the background

and brings the object into focus, giving us information about its shape and

size. The Delta frame also reduces the number of pixels that the system will

have to process.

1.3.3 Thresholding

In order to further enhance the resolution of the delta frame Gray Scale

Thresholding is done. Example – Figure 1.3. The individual pixels in the

grayscale image are marked as object pixels if their value is greater than some

threshold value (initially set as 80) and as background pixels otherwise.

Figure 1.3: Gray Level Thresholding

14

In this case the object pixel is given a value of “1” while a background

pixel is given a value of “0.” The thresholding can also be made adaptive when a

different threshold is used for different regions in the image. The initial

threshold value is set by considering the mean or median value. The approach is

justified if the object pixels are brighter than the background. Else an iterative

method has been implemented to obtain the value. The algorithm is as follows –

1. An initial random threshold (T) is chosen.

2. The image is segmented into object and background pixels using the

above threshold. This creates two sets:

1. G1 = {f(m,n):f(m,n)>T} (object pixels)

2. G2 = {f(m,n):f(m,n) T} (background pixels)

3. The average of each set is computed.

1. m1 = average value of G1

2. m2 = average value of G2

4. A new threshold is created that is the average of m1 and m2

1. T’ = (m1 + m2)/2

1.3.4 Noise Filtering

 The median filter is normally used to reduce noise in an image. The

median filter is considered to do a better job than the mean filter of preserving

useful detail in the image. The filter considers each pixel in the image in turn

and looks at its nearby neighbors to decide whether or not it is representative of

its surroundings. It then replaces the pixel value with the median of the

neighboring pixel values. The median is calculated by first sorting all the pixel

values from the surrounding neighborhood into numerical ascending order and

15

then replacing the pixel being considered with the middle pixel value. (If the

neighborhood under consideration contains an even number of pixels, the

average of the two middle pixel values is used.) An example is shown below -

Figure 1.4: Example of Median Filter

The main advantages of the median filter:

• The median is a more robust average than the mean and so a single very

unrepresentative pixel in a neighborhood will not affect the median value

significantly.

• Since the median value must actually be the value of one of the pixels in

the neighborhood, the median filter does not create new unrealistic pixel

values. Thus the median filter is much better at preserving sharp edges

than the mean filter.

 In general, the median filter allows a great deal of high spatial frequency

detail to pass while remaining very effective at removing noise on images where

less than half of the pixels in a smoothing neighborhood have been effected.

16

1.3.5 Image Enhancement

 The aim of image enhancement is to improve the interpretability or

perception of information about the object. We have designed a spatial domain

method which operates directly on the pixels. The filtered image is subjected to

Edge Detection by the use of Sobel Operators. The outer boundary of the object

is acquired. This gives us a noise free output image containing only on the

boundary.

 This image is then superimposed on the Object frame which was

originally selected. This produces the required Enhanced Image. The object can

be easily recognized using the acquired representation and its shape and size can

be approximated.

1.4 OBJECT TRACKING

1.4.1 Optimal Frame Rate

The algorithm previously described helps identify the object and gives

us information about its shape and size. Now in order to track it, we must

select the frames acquired from the video. Considering a 10 second video,

100 frames are produced. The frames are then fed into the Matlab program

at the rate of 1 frame per second. This is under the impression that the rate

that we choose contains the complete motion of the object. The optimal

frame rate considered is 1 frame per second. Further complexity is reduced if

we alter the input frame rate to 4 frames per second.

17

1.4.2 Determining the Objects Position

 In most applications, the center of gravity is used for tracking the

target as it is a geometric property of any object. The center of gravity is the

average location of the weight of an object. It can be used to describe the

motion of the object through space in terms of the translation of the point of

the object from one place to another.

In general, determining the center of gravity is a complicated

procedure because the mass may not be uniformly distributed throughout the

object. In order to simplify the problem we assume the object is composed

of uniform material. We perform the preprocessing algorithms on the image

to acquire a noise free enhanced image. An operator then scans the entire

length of the image frame for the first white pixel. This is a clear indication

of the 2D position of the object within that time frame. This is iterative

process and it repeated over all the frames.

1.4.3 Comparative Tracking

The background frame is kept as the standard base. The following

frames contain the updated location of the target. The optimal frame rate is

chosen as previously explained. Each frame is fed into the program which

subjects the frame to process of object recognition to achieve a noise free

enhanced image containing only the object.

 At the rate of 1 frame per second, the enhanced image is fed to the

tracking program. This analyzes each frame and computes the first white

pixel that represents the object. This is under the assumption that object is

18

made up of uniform material. This point is then plotted on a new image as

the first position of the object. Subsequent frames are collected, subtracted

from the background, filtered, enhanced and then the points are computed.

The updated locations of the pixel points are collected to provide the

approximate path taken by the object. The iterative program acquires the

frames and plots the individual points – Object Path.

1.5 MATLAB SIMULATION

Figure1.5: Frame Generation using Matlab

19

 a) Gray Level Conversion b) Threshold

c) Median Filter (Noise Removal) d) Edge Detection

 e) Enhanced Image

Figure 1.6: Step-wise generation of Enhanced Image

20

Path of the Object Tracked

Figure 1.7: Object Path obtained

21

CHAPTER 2

FPGA IMPLEMENTATION OF OBJECT TRACKING

ALGORITHM

2.1 THE ADVANTAGE OF USING FPGAs

Image processing is difficult to achieve on a serial processor. This is

due to the large data set required to represent the image and the complex

operations that need to be performed on the image. Consider video rates of

25 frames per second, a single operation performed on every pixel of a 768

by 576 color image (Standard PAL frame) equates to 33 million operations

per second. Many image processing applications require that several

operations be performed on each pixel in the image resulting in an even

large number of operations per second. Thus the perfect alternative is to

make use of an FPGA. Continual growth in the size and functionality of

FPGAs over recent years has resulted in an increasing interest in their use

for image processing applications. In a recent benchmarking test conducted

by Berkeley Design Technology, Inc. (BDTi), the following results were

acquired –

Figure 2.1: Benchmarking Test conducted by BDTi

22

The main advantage of using FPGAs for the implementation of image

processing applications is because their structure is able to exploit spatial

and temporal parallelism. FPGA implementations have the potential to be

parallel using a mixture of these two forms. For example, the FPGA could

be configured to partition the image and distribute the resulting sections to

multiple pipelines all of which could process data concurrently. Such

parallelization is subject to the processing mode and hardware constraints of

the system.

Figure 2.2: Programmable Logic Blocks of an FPGA

In Figure 2.2, an FPGA consists of a matrix of logic blocks that are

connected by an interconnect network. Both the logic blocks and the

interconnect network are reprogrammable allowing application specific

hardware to be constructed, while at the same time maintaining the ability to

change the functionality of the system with ease. As such, an FPGA offers a

compromise between the flexibility of general purpose processors and the

hardware-based speed of ASICs.

23

2.1.1 Hardware Constraints

There are three modes of processing: stream, offline and hybrid

processing. In stream processing, data is received from the input device in a

raster nature at video rates. Memory bandwidth constraints dictate that as

much processing as possible can be performed as the data arrives. In offline

processing there is no timing constraint. This allows random access to

memory containing the image data. The speed of execution in most cases is

limited by the memory access speed. The hybrid case is a mixture of stream

and offline processing. In this case, the timing constraint is relaxed so the

image is captured at a slower rate. While the image is streamed into a frame

buffer it can be processed to extract the region of interest. This region can be

processed by an offline stage which would allow random access to the

region’s elements.

2.1.1.1 Timing Constraints

If there is no requirement on processing time then the constraint on

timing is relaxed and the system can revert to offline processing. This is

often the result of a direct mapping from a software algorithm. The

constraint on bandwidth is also eliminated because random access to

memory is possible and desired values in memory can be obtained over a

number of clock cycles with buffering between cycles. Offline processing in

hardware therefore closely resembles the software programming paradigm;

the designer need not worry about constraints to any great extent. This is the

approach taken by languages that map software algorithms to hardware. The

goal is to produce hardware that processes the input data as fast as possible

given various automatic and manual optimization techniques.

24

2.1.1.2 Bandwidth Constraints

Frame buffering requires large amounts of memory. The size of the

frame buffer depends on the transform itself. In the worst case (rotation by

90º, for example) the whole image must be buffered. A single 24-bit (8-bits

per color channel) color image with 768 by 576 pixels requires 1.2 MB of

memory. FPGAs have very limited amounts of on-chip RAM. The logic

blocks themselves can be configured to act like RAM, but this is usually an

inefficient use of the logic blocks. Typically some sort of off-chip memory is

used but this only allows a single access to the frame buffer per clock cycle,

which can be a problem for the many operations that require simultaneous

access to more than one pixel from the input image. For example, bilinear

interpolation requires simultaneous access to four pixels from the input

image. This will be on a per clock cycle basis if real-time processing

constraints are imposed.

2.2 SPARTAN 3E (XC3S500E) FPGA

2.2.1 Overview of Features and Layout

The Spartan-3E FPGA is embedded with the 90nm technology at the

heart of its architecture. This reduces the die size and cost, increases

manufacturing efficiency, and addresses a wider range of applications. You

can integrate embedded processing, digital signal processing (DSP), and

connectivity capabilities into Spartan-3E devices at no extra cost. These are

supported with customized tools (ISE and EDK), JTAG probes, IP cores,

design services, and training. The Spartan-3E diagram shown in Figure 2.3

allows users to easily migrate to different densities across multiple packages

and supports 18 different single-ended and differential I/O standards.

25

Figure 2.3: Spartan 3E Layout

The main advantages are High Speed Connectivity, High Performance DSP

Solutions and Lowest Cost Embedded Processing Solutions.

1. High Speed Connectivity

System connectivity consists of physical parallel I/O interfaces and the

protocols required for higher bandwidth. The Spartan-3E device I/O pins

support full functionality for fast, flexible electrical interfaces. The PCI-

Express slots are 100 MHz compatible. Also there are 18 I/O standards,

DDR I/O registers, DCMs.

2. High Performance DSP Solutions

Spartan-3E FPGAs help you efficiently build DSP solutions that handle. Up

to 9.1 billion multiply and accumulates (MACs) per second. There are up to

36, 18x18 embedded multipliers for implementing compact DSP structures

26

such as MAC engines, and adaptive and fully parallel FIR filters. The Block

RAM can be used for storing partial products and coefficients.

3. Lowest Cost Embedded Processing Solutions

The effective fractional cost of incorporating the MicroBlaze™ (32-bit soft

processor) into a Spartan-3E FPGA is very less. The Xilinx MicroBlaze with

Spartan-3E FPGA (Figure 2.4) can be used to integrate the entire processing

engine, all control functions, and additional supporting logic into a single

cost-effective platform. The Embedded Development Kit (EDK) offers a

common development environment for Spartan Series FPGAs with

MicroBlaze.

Figure 2.4: Spartan 3E Starter Kit

27

2.3 DEVELOPMENT TOOLS

2.3.1 Xilinx Embedded Development Kit 8.1i

 The FPGA/FPGA chip is supported with a complete set of software

and hardware development tools - Xilinx Embedded Development Kit

(EDK) and Xilinx Platform Studio (XPS) tools development software. This

tool is used to create a simple processor system. The microprocessors

available for use in Xilinx Field Programmable Gate Arrays (FPGAs) with

Xilinx EDK software tools can be broken down into two broad categories.

There are soft-core microprocessors (MicroBlaze) and the hard-core

embedded microprocessor (PowerPC).

EDK uses Intellectual-Property Interface (IPIF) library to implement

common functionality among various processor peripherals. It is verified,

optimized and highly parameterizable. It also gives you a set of simplified

bus protocol called IP Interconnect (IPIC). Using the IPIF module with

parameterization that suits your needs will greatly reduce your design and

test effort because you don’t have to re-invent the wheel. This is done in

EDK with a wizard that walks you through the entire process.

2.3.2 MicroBlaze – Virtual Microprocessor

The MicroBlaze is a virtual microprocessor that is built by combining

blocks of code called cores. MicroBlaze is an embedded soft core that

includes the following features:

28

• Thirty-two 32-bit general purpose registers.

• 32 bit instruction word with three operands and two addressing

modes.

• Separate 32-bit instruction and data buses that conform to IBM's OPB

(On-chip Peripheral Bus) specification.

• 32-bit address bus

• Single issue pipeline

The MicroBlaze is a full 32-bit RISC CPU that is embedded in the Xilinx

FPGA SPARTAN 3E and Virtex-4 FPGA families. It can be run at speeds

up to 100MHz and is the best choice for CPU-intensive tasks in Xilinx

FPGA based systems.

2.4 ALGORITHM MAPPING

 The FPGA implementation is divided into blocks, each block

implementing a separate portion of the algorithm. This approach allowed for

concurrent development and for testing of individual blocks. The inbuilt

finite state machine (FSM) controls each block. In addition, a high-level

FSM controls the interaction of the blocks. Each computational block is

implemented in C and checked for proper functionality with simulators (ISE

Simulator)

The Algorithm primarily consists on mapping low-level operations

like local filters. Conceptually, each pixel in the output image is produced by

sliding an N×N window over the input image and computing an operation

according to the input pixels under the window and the chosen window

29

operator. The result is a pixel value that is assigned to the centre of the

window in the output image as shown below in Figure 2.5.

Figure 2.5: Mapping the Window Operation

For processing purposes, the straightforward approach is to store the

entire input image into a frame buffer, accessing the neighborhood pixels

and applying the function as needed to produce the output image. If

processing of the video stream is required N×N pixel values are needed to

perform the calculations each time the window is moved and each pixel in

the image is read up to N×N times. Memory bandwidth constraints make

obtaining all these pixels each clock cycle impossible. Input data from the

previous N-1 rows can be cached using a shift register (or circular memory

buffer) for when the window is scanned along subsequent lines.

Instead of sliding the window across the image, the above

implementation now feeds the image through the window. Introducing the

row buffer data structures adds additional complications. With the use of

30

both caching and pipelining there needs to be a mechanism for adding to the

row buffer and for flushing the pipeline. This is required when operating on

video data, due to the horizontal blanking between lines and the vertical

blanking between frames. If either the buffer or the pipeline operated during

the blanking periods the results for following pixels would be incorrect due

to invalid data being written to them. This requires us to stop entering data

into the row buffers and to stall the pipeline while a blanking period occurs.

A better option is to replicate the edge pixels of the closest border. Such

image padding can be considered as a special case of pipeline priming.

When a new frame is received the first line is pre-loaded into the row buffer

the required number of times for the given window size. Before processing a

new row the first pixels are also pre-loaded the required number of times, as

is the last pixel of the line and the last line. Figure 2.6 shows the

implementation of the Row Buffers for Window Operations.

Figure 2.6: Window Operation using Buffers

31

2.4.1 Memory Interfacing and C Compiler

 Because the Spartan 3E FPGA that is used in the design does not

have enough internal RAM for image storage, the processing blocks were

interfaced with five on-board 256K×36-bit pipelined DDRAM devices. To

reduce the hardware computation time, each sub-block can read and write

within the same clock cycle; each sub-block was connected to two memory

chips while active. Typically, a computational block reads its inputs from

one memory and writes its outputs to another. It is also necessary to

control/arbitrate the FPGA internal block RAM, which is used for storage of

computed thresholds and other parameters. The memory interface provides

the computational blocks with a common interface and hides some of the

complex details.

2.4.1.1 C Compiler

 Xilinx MicroBlaze Processor Supports Linux and C-to-FPGA

Acceleration Embedded systems can be developed to create hardware-

accelerated, single-chip applications that take advantage of the MicroBlaze

processor features and C-to-hardware acceleration for complex,

performance-critical applications. The addition of memory management to

the MicroBlaze processor provides embedded systems designers with a

powerful new alternative for hardware-accelerated embedded systems. By

offloading critical C-language processes to dedicated hardware

coprocessors, the system as a whole can operate at a slower clock speed,

consume less power and yet provide vastly more processing performance

than would be possible using a discrete processor.

32

Using the automated C-to-hardware compiler tools and interactive

optimizers, performance gains well in excess of 100X over software-only

approaches, in applications that include image processing, DSP and secure

communications have been reported.

 The MicroBlaze configurable soft processor includes configurable

coprocessor capabilities through its high-performance Fast Simplex Link

(FSL) accelerator interface. The compiler automatically parallelizes and

pipelines C-language algorithm and generates FSL interfaces, with little or

no need for hardware design experience or hardware description language

(HDL) coding. The automatic C-to-HDL capabilities of Microblaze

dramatically accelerate system design.

2.4.1.2 Program Files

Input Files

1. MHS File

The Microprocessor Hardware Specification (MHS) file defines the

hardware component. The MHS file serves as an input to the Platform

Generator (Platgen) tool. An MHS file defines the configuration of the

embedded processor system, and includes the following:

• Bus architecture

• Peripherals

• Processor

• System Connectivity

33

2. MSS File

The Microprocessor Software Specification (MSS) is used as an input file

to the Library Generator (Libgen). The MSS file contains directives for

customizing OSs, libraries, and drivers.

3. UCF File

The User Constraints File (UCF) specifies timing and placement

constraints for the FPGA Design.

Output Files

 1. Block Memory Map

A BMM file is a text file that has syntactic descriptions of how

individual Block RAMs constitute a contiguous logical data space. When

updating the FPGA bitstream with memory initialization data, the

Data2Mem utility uses the BMM file to direct the translation of data into the

proper initialization form. This file is generated by the Platform Generator

(Platgen) and updated with physical location information by the Bitstream

Generator tool.

2. ELF File

The Executable and Linkable Format (ELF) is a common standard in

computing. An executable or executable file, in computer science, is a file

whose contents are meant to be interpreted as a program by a computer.

Most often, they contain the binary representation of machine instructions of

a specific processor, but can also contain an intermediate form that requires

the services of an interpreter to be run.

34

Figure 2.7: Synthesized Block Diagram

35

2.5 SIMULATION

2.5.1 Hyper Terminal

The pixels generated through the FPGA are viewed using Matlab. The pixel

values are displayed using a Hyper Terminal Connection. The interface can

be established by appropriately setting the baud rate and COM port. The

pixels obtained are copied to a text file which is read by Matlab. The

program converts the text file to the required image. Figure 2.8 shows

Images obtained from the pixel values computed using the FPGA.

 a) Threshold b) Noise Filter

 c) Edge Detection d) Enhanced Image

2.8 Text File converted to Image in Matlab

36

Object Path Obtained

Figure 2.9: Pixel Values obtained from FPGA plotted using Matlab

37

CHAPTER 3

CONCLUSION

 Object identification and tracking requires the use of an efficient

signal processing system. Although video processing is achievable on serial

processors, it can be beneficial to take advantage of the parallelism, low

cost, and low power consumption offered by FPGAs. The successful

implementation of this image processing algorithm illustrates that the digital

signal processing required for high rate sensing application can be efficiently

implemented on FPGA hardware.

 The gray scale transformation has been used to remove the coherence

of the background and the target to be tracked. The Delta Frame-based

segmentation and Thresholding combine two intensive operations into one

step, eliminating the need for large numbers of parallel comparators. The

resulting optimized enhanced image fits on a small FPGA, such as the Xilinx

Spartan- III XC3S500E, with sufficient resources available for an

application to make use of the derived tracking information. We have

demonstrated this by designing a simple video which contains an object in

motion.

 When we compare the outputs obtained from Matlab and FPGA, we

find the outputs obtained using the Spartan 3E kit are computationally

efficient. The pixel values are scaled and the outputs are comparable to the

ones obtained using Matlab.

38

APPENDIX 1

Pseudo Code for Object Tracking C Program

//Median Function

Module FindMedian(Values)

Start

Sort the Values

If CountOf(Values) Is Even

 Return Mean(Middle Two Values)

Else

 Return Middle Value

End

Module MainProgram

Start

//Initialize the variables

Initialize MatVal, MatVal1, IntVal, IntVal1 To 0

Initialize cp To 0x25000000

Initialize cp1 To 0x25100000

Initialize NoOfRows,NoOfColumns To 128

Initialize NoOfRows1, NoOfColumns1 To 120

//Read 1
st
 Input

For I = 0 To NoOfRows

 For J = 0 To NoOfColumns

 While(True)

 If Ch Ranges from 0 to 9 Then

39

 MatVal = (MatVal * 10) + Ch

 Else If

 RedB[i][j] = MatVal;

 MatVal = 0

 Increment cp

If Ch is NewLine or IntVal Is 010 Or 020 Or

003 Or 032 Then

 Increment cp

 End If

 Break Out Of While Loop

 End If

 End While

 Increment cp

 End For

 Input[i][j] = RedB[i][j]

End For

//Read 2
nd

 Input

For I = 0 To NoOfRows1

 For J = 0 To NoOfColumns1

 While(True)

 If Ch1 Ranges from 0 to 9 Then

 MatVal1 = (MatVal1 * 10) + Ch

 Else If

 RedB1[i][j] = MatVal1;

 MatVal1 = 0

 Increment cp1

40

If Ch1 is NewLine Or IntVal1 Is 010 Or 020

Or 003 Or 032 Then

 Increment cp1

 End If

 Break Out Of While Loop

 End If

 End While

 Increment cp1

 End For

 Input1[i][j] = RedB1[i][j]

End For

//Delta Frame Generation

For I = 0 To NoOfRows

 For J = 0 To NoOfColumns

 Seg[i][j] = Input[i][j] - Input1[i][j]

 If Seg[i][j] > 20 Then

 Seg1[i][j] = 255

 Else

 Seg1[i][j] = 0

 End If

 End For

End For

//Median Filter

For I = 0 To NoOfRows

 For J = 0 To NoOfColumns

 If Not Any Edge Or Corner Then

 bbr = Median(All the Values In Seg1)

41

 End If

 FirstFilter[i][j] = bbr

 End For

End For

//Thresholding

For I = 0 To NoOfRows

 For J = 0 To NoOfColumns

 If FirstFilter[i][j] > 40 Then

 FirstFilter[i][j] = 255

 Else

 FirstFilter[i][j] = 0

 End If

 EdgeImage[i][j] = 255

 End For

End For

//Edge Detection

For I = 0 To NoOfRows

 For J = 0 To NoOfColumns

 If I == 0 And J == 0 Then

If FirstFilter[j][i+1] And FirstFilter[j+1][i+1] And

FirstFilter[j+1][i] Are Equal To 255 Then

 EdgeImage[j][i] = 0

 End If

 Else If I == 0 And J == Length Then

If FirstFilter[j+1][i] And FirstFilter[j+1][i-1] And

FirstFilter[j][i-1] Are Equal To 255 Then

 EdgeImage[j][i] = 0

42

 End If

 Else If I == Length And J == 0 Then

If FirstFilter[j-1][i] And FirstFilter[j-1][i+1] And

FirstFilter[j][i+1] Are Equal To 255 Then

 EdgeImage[j][i] = 0

 End If

 Else If I == Length And J == Length Then

If FirstFilter[j-1][i-1] And FirstFilter[j][i-1] And

FirstFilter[j-1][i] Are Equal To 255 Then

 EdgeImage[j][i] = 0

 End If

 Else If I == 0 And J == Length Then

If FirstFilter[j+1][i] And FirstFilter[j+1][i-1] And

FirstFilter[j][i-1] Are Equal To 255 Then

 EdgeImage[j][i] = 0

 End If

 Else If I == 1

If FirstFilter[j][i-1] And FirstFilter[j+1][i-1] And

FirstFilter[j+1][i] And FirstFilter[j+1][i+1] And

FirstFilter[j][i+1] Are Equal To 255 Then

 EdgeImage[j][i] = 0

 End If

 Else If I == Length

If FirstFilter[j-1][i-1] And FirstFilter[j+1][i-1] And

FirstFilter[j+1][i] And FirstFilter[j-1][i] And

FirstFilter[j][i-1] Are Equal To 255 Then

 EdgeImage[j][i] = 0

43

 End If

 Else If J == 1

If FirstFilter[j][i-1] And FirstFilter[j-1][i-1] And

FirstFilter[j-1][i] And FirstFilter[j-1][i+1] And

FirstFilter[j][i+1] Are Equal To 255 Then

 EdgeImage[j][i] = 0

 End If

 Else

If FirstFilter[j-1][i-1] And FirstFilter[j+1][i-1] And

FirstFilter[j+1][i] And FirstFilter[j+1][i+1] And

FirstFilter[j][i-1] And FirstFilter[j-1][i] Are Equal To 255

Then

 EdgeImage[j][i] = 0

 End If

 End If

 End For

End For

//Image Enhancement and Object Tracking

For I = 0 To NoOfRows

 For J = 0 To NoOfColumns

 Seg[i][j] = Input[i][j] - Input1[i][j]

 If Seg[i][j] = 1 Then

 Store [i],[j]

 End If

 End For

End For

End

44

APPENDIX 2

Development Tools: Microblaze Virtual Microprocessor

 The MicroBlaze core is organized as a Harvard architecture with

separate bus interface units for data accesses and instruction accesses.

MicroBlaze does not separate between data accesses to I/O and memory (i.e.

it uses memory mapped I/O). The processor has up to three interfaces for

memory accesses: Local Memory Bus (LMB), IBM’s On-chip Peripheral

Bus (OPB), and Xilinx Cache Link (XCL). The LMB provides single-cycle

access to on-chip dual-port block RAM (BRAM). The OPB interface

provides a connection to both on-chip and off-chip peripherals and memory.

The CacheLink interface is intended for use with specialized external

memory controllers. MicroBlaze also supports up to 8 Fast Simplex Link

(FSL) ports, each with one master and one slave FSL interface. The FSL is a

simple, yet powerful, point-to-point interface that connects user developed

custom hardware accelerators (co-processors) to the MicroBlaze processor

pipeline to accelerate time-critical algorithms.

 The backbone of the architecture is a single-issue, 3-stage pipeline

with 32 general-purpose registers, an Arithmetic Logic Unit (ALU), a shift

unit, and two levels of interrupt. This basic design can then be configured

with more advanced features to tailor to the exact needs of the target

embedded application such as: barrel shifter, divider, multiplier, single

precision floating-point unit (FPU), instruction and data caches, exception

handling, debug logic, Fast Simplex Link (FSL) interfaces and others. This

45

flexibility allows the user to balance the required performance of the target

application against the logic area cost of the soft processor.

The items in white are the backbone of the MicroBlaze architecture while

the items shaded gray are optional features available depending on the exact

needs of the target embedded application. Because MicroBlaze is a soft-core

microprocessor, any optional features not used will not be implemented and

will not take up any of the FPGAs resources.

Instruction Operations:

 The MicroBlaze pipeline is a parallel pipeline, divided into three

stages: Fetch, Decode, and Execute. In general, each stage takes one clock

cycle to complete. Consequently, it takes three clock cycles (ignoring delays

46

or stalls) for the instruction to complete. Each stage is active on each clock

cycle so three instructions can be executed simultaneously, one at each of

the three pipeline stages. MicroBlaze implements an Instruction Prefetch

Buffer that reduces the impact of multi-cycle instruction memory latency.

While the pipeline is stalled by a multi-cycle instruction in the execution

stage the Instruction Prefetch Buffer continues to load sequential

instructions. Once the pipeline resumes execution the fetch stage can load

new instructions directly from the Instruction Prefetch Buffer rather than

having to wait for the instruction memory access to complete. The

Instruction Prefetch Buffer is part of the backbone of the MicroBlaze

architecture and is not the same thing as the optional instruction cache.

Stack:

 The stack convention used in MicroBlaze starts from a higher

memory location and grows downward to lower memory locations when

items are pushed onto a stack with a function call. Items are popped off the

stack the reverse order they were put on; item at the lowest memory location

of the stack goes first and etc.

Registers:

 The MicroBlaze processor also has special purpose registers such

as: Program Counter (PC) can read it but cannot write to it, Machine Status

Register (MSR) to indicate the status of the processor such as indicating

arithmetic carry, divide by zero error, a Fast Simplex Link (FSL) error and

enabling/disabling interrupts to name a few. An Exception Address Register

(EAR) that stores the full load/store address that caused the exception. An

Exception Status register (ESR) that indicates what kind of exception

47

occurred. A Floating Point Status Register (FSR) to indicate things such as

invalid operation, divide by zero error, overflow, underflow and

denormalized operand error of a floating point operation.

Interrupts:

 MicroBlaze also supports reset, interrupt, user exception, break and

hardware exceptions. For interrupts, MicroBlaze supports only one external

interrupt source (connecting to the Interrupt input port). If multiple interrupts

are needed, an interrupt controller must be used to handle multiple interrupt

requests to MicroBlaze. An interrupt controller is available for use with the

Xilinx Embedded Development Kit (EDK) software tools. The processor

will only react to interrupts if the Interrupt Enable (IE) bit in the Machine

Status Register (MSR) is set to 1. On an interrupt the instruction in the

execution stage will complete, while the instruction in the decode stage is

replaced by a branch to the interrupt vector (address 0x10). The interrupt

return address (the PC associated with the instruction in the decode stage at

the time of the interrupt) is automatically loaded into general-purpose

register R14. In addition, the processor also disables future interrupts by

clearing the IE bit in the MSR. The IE bit is automatically set again when

executing the RTID instruction.

C Compiler:

 Writing software to control the MicroBlaze processor must be done

in C/C++ language. Using C/C++ is the preferred method by most people

and is the format that the Xilinx Embedded Development Kit (EDK)

software tools expect. The EDK tools have built in C/C++ compilers to

generate the necessary machine code for the MicroBlaze processor.

48

EDK Interface:

 The MicroBlaze processor is useless by itself without some type of

peripheral devices to connect to and EDK comes with a large number of

commonly used peripherals. Many different kinds of systems can be created

with these peripherals, but it is likely that you may have to create your own

custom peripheral to implement functionality not available in the EDK

peripheral libraries and use it in your processor system.

 The processor system by EDK is connected by On-chip Peripheral

Bus (OPB) and/or Processor Local Bus (PLB), so your custom peripheral

must be OPB or PLB compliant. Meaning the top-level module of your

custom peripheral must contain a set of bus ports that is compliant to OPB or

PLB protocol, so that it can be attached to the system OPB or PLB bus.

49

REFERENCES

1. Chi-Jeng Chang, Pei-Yung Hsiao, Zen-Yi Huang (2006). ‘Integrated

Operation of Image Capturing and Processing in FPGA’, IJCSNS

International Journal of Computer Science and Network Security,

VOL.6 No.1A, pp 173-179.

2. Christopher T. Johnston, Kim T Gribbon, Donald G. Bailey (2005)

‘FPGA based Remote Object Tracking for Real-time Control’, 1st

International Conference on Sensing Technology November 21-23,

2005 Palmerston North, New Zealand.

3. Crookes D., Benkrid K., Bouridane A., Alotaibi K., and Benkrid

A.(2000), ‘Design and implementation of a high level programming

environment for FPGA-based image processing’, Vision, Image and

Signal Processing, IEE Proceedings, vol. 147, Issue: 4 , Aug, 2000,

pp. 377 -384.

4. Hong C.S,. Chung S.M, Lee J.S. and Hong K.S. (1997), ‘A Vision-

Guided Object Tracking and Prediction Algorithm for Soccer Robots’,

IEEE Robotics and Automation Society, Vol. 1 pp: 346-351.

5. L. Baumela and D. Maravall, "Real-time target tracking," Aerospace

and Electronic Systems Magazine, IEEE, vol. 10, no. 7, pp. 4-7, 1995.

6. L. Kilmartin, M. O Conghaile (1999), ‘Real Time Image Processing

Object Detection and Tracking Algorithms’, Proceedings of the Irish

Signals and Systems Conference, NUI, Galway, June 1999, pp. 207-

214.

