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ABSTRACT

In the conventional Gabor Transform, the Fast Fourier trans-
form is used for computation of the biorthogonal function and
its multiplication complexity is of O(N3), N being the num-
ber of samples. In this paper we define an efficient Gabor
expansion algorithm employing the Arithmetic Fourier Trans-
form (AFT). The proposed algorithm reduces the multiplica-
tion complexity to O(N). The noisy speech signal input is
first passed through a Kalman filter and the enhanced output
is obtained by an iterative noise removal process. The pro-
posed Gabor expansion is applied to the enhanced signal to
extract the unique feature vector consisting of dominant har-
monics and the associated phase. This is a novel proposal and
it is shown that the extracted features help design computa-
tionally efficient speech recognition systems.

Index Terms— Speech recognition, Time-frequency
analysis, Fourier transforms.

1. INTRODUCTION

The dynamic characteristics of the human speech have
been commonly exploited in Automatic Speech Recogni-
tion (ASR) systems by using feature extraction techniques,
temporal filtering and several short-term spectral representa-
tions. Most of the available techniques are aimed at extracting
or improving very specific parameters of the speech signals,
thus necessitating the need for a composite system designed
to work under near real-time conditions. This paper describes
an iterative approach for speech signal feature extraction
aimed at speech recognition. The system comprises of a
noise removal filter, an efficient Gabor representation fol-
lowed by feature vector extraction.

The input speech signal is assumed to be corrupted by a
noise factor inherent in the recording device and the trans-
mitting channel. An iterative Kalman filter is used to initiate
the noise removal process. The noise related statistical pa-
rameters are estimated and constantly updated by using the
previous iterative estimate. With every iteration, the mea-
surement noise covariance tends towards zero, producing the
enhanced noiseless signal.

The Gabor representation transforms the input into a dis-

crete set of shifted and modulated versions using the Fast
Fourier Transform (FFT). To reduce the computational com-
plexity, the Gabor coefficients are obtained through the Arith-
metic Fourier Transform (AFT), which has a complexity of
O(N) multiplications and O(N2) additions. The enhanced
speech is passed through the Gabor filter and a feature vector
is determined, consisting of a set of dominant harmonics and
associated phase components. In the tests conducted, the
acquired feature vector was used to set a threshold in order to
differentiate the words in a set of sentences containing similar
sounding words (Homonyms).

This system has been one of the major research projects
at the Waran Research FoundaTion. A database and asso-
ciated biological neural system is being constructed to map
the feature vector onto the Broca region of the brain to study
the application of the proposed system for individuals with
speech disabilities.

This paper is organized as follows. Section 2 describes
the Kalman based noise removal filter. Section 3 deals with
the Proposed Computationally Efficient Gabor transform.
Section 4 presents the experimental results and Section 5
presents the conclusion.

2. KALMAN FILTER FOR NOISE REMOVAL

Let xk and zk denote the clean speech and noise respectively.
They are represented by linear stochastic difference equations

x(k + 1) = Axk + wk (1)
z(k + 1) = Hxk + vk (2)

The factors A and H represent the estimated linear coeffi-
cients, wk and vk are random variables and represent the pro-
cess and measurement noise respectively. They are assumed
to be independent of each other, white, and with normal
probability distributions. In reality, there is often no a priori
knowledge of the environment, i.e. whether it is white or
colored noise. Under such conditions the Kalman filter pro-
vides a minimum mean-squared error estimate of the clean
signal if the noise is a Gaussian process or a linear minimum
mean-squared error estimate if the noise is non-Gaussian.
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Fig.1 Kalman Filter for Noise Removal

The filter achieves good speech quality by recursively re-
ducing the processing distortion embedded within the speech
signals. To begin this iterative process an initial estimate of
the statistical noise parameters is required. The noise removal
filter operates by using the available noisy information zk at
the current time step to refine the previously acquired predic-
tion x′k and finally arrive at a new, more accurate state esti-
mate of the clean speech signal, xk, for the current time step
as in Fig.1.

xk = HT .x′(k|zk) (3)

With each time step the filter is tuned to reduce the es-
timated value of Pk. The accuracy of the enhanced speech
signal is a measure of the tendency of the Estimation Error
Covariance, Pk towards zero.

Pk → 0 (4)

2.1. Tuning Parameters

In order to tune the system to function under real-time condi-
tions, two parameters are calculated, an Estimation Threshold
N and a Noise Covariance R.

Pk → N (5)

R = (Kk/PkHT )−HPkHT (6)

Kk represents the Kalman Gain.
The threshold is preset during the initial estimation pro-

cess and the filter iteration progresses and halts as this thresh-
old is reached. Under ideal conditions N = 0. The new
calculated value of R is a direct measure of the noise fac-
tor present within the recording devices and the transmitting
channel. Use of this value during the next filter iteration in-
creases the efficiency of the system and also helps model the
noise parameters of the system related components. Selection
of appropriate estimation parameters is vital in tuning the fil-
ter to perform efficiently in real time conditions.

3. PROPOSED GABOR EXPANSION FOR FEATURE
VECTOR EXTRACTION

3.1. Gabor Transform using AFT

The enhanced speech signal xk obtained from the filter is
then processed by a Gabor Expansion Algorithm. The Ga-
bor Transform was chosen due to its decomposition of the in-
put signal into functions localized in both time and frequency,
enabling us to study the signal modulation. To compute the
spatio-temporal representation of the signal, a Gaussian win-
dow h(k) is used. Given the input signal of length L, the
expansion follows as

x(k) = (1/
√

N)
M−1∑
m=0

N−1∑
n=0

am,nh(k −mN)ejπ2nk/N (7)

where L = MN
In the above equation, M and N represent the respec-

tive time and frequency domain shifts. A common method
for computing the coefficients involves the multiplication of
the input signal by a function which is biorthogonal to the
Gaussian window. The biorthogonal function is obtained
with the help of the Fourier Transform. Unfortunately, the
biorthogonal function is nonlocal and the pre-multiplications
involved is computationally expensive. To overcome this,
the biorthogonal function is computed using the Arithmetic
Fourier Transform shown in Fig.2. This efficiency can be
attributed to use of the Number theoretic concept, the Mobius
Inversion Formula.

µ(n) = 1 if n = 1
µ(n) = (−1)α if n = p1p2...p

α

µ(n) = 0 if p2
i |n for any i
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Fig.2 Gabor Coefficients computed using the AFT blocks



A Kronecker delta function is necessary for the compu-
tation of the biorthogonal matrix of the Gabor Expansion as
shown below

L−1∑
m=0

h(k + mN)γ′(k)ejπ2nk/N = δm.δn (8)

It is known that this function can be represented using the
Mobius function. The Kronecker delta function is thus de-
fined for positive integers m and n by the formula

δ(m,n) =
∑

d|(m/n)

µ(d) = 1ifm/n = 1 (9)

0 otherwise

The required Fourier Coefficients are computed as the Ea

matrix. It is comprised of diagonal blocks, with each block
computed as

E =
bL/Kc∑
n=1

µ(n).S(kn) (10)

where S(kn) represents the mean/averaged input signal. The
1D Gabor coefficients are computed using the Gaussian Win-
dow matrix H, the Arithmetic Fourier Transform matrix Ea
and the clean speech input xk.

a = (HEa∗)−1.xk (11)

After the computation of the Fourier Transform Matrix, the
coefficients are computed using the above equation.

3.2. Feature Vector Extraction

The feature vector set for the proposed system consists of lo-
cally dominant harmonics and associated phase components
computed Fig.3.

Fv = [δ, ψ,H(w)] (12)

After the enhanced signal is obtained, a windowed spectrum
of the speech signal is plotted and the corresponding dB lev-
els are stored. An inverse Fourier Transform is performed
on the stored data and the time-frequency expansion is ini-
tialized. The absolute value of the coefficients obtained are
scaled and plotted. For a particular input speech signal, the
plot reveals a unique sequence of spikes with each spike cor-
responding to a word as shown in the next Section.

[δ] =
N∑

i=1

max(fi) (13)

where fi represents the frequency component of each individ-
ual spike. The resulting dominant harmonic set was used to
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Fig.3 Gabor Feature Extraction

set a Threshold and found to be consistent in differentiating
homonyms across a large number of sentences. The resulting
Gabor signal spectrum can be decomposed into the short-time
magnitude spectrum and the short-time phase spectrum.

X(t, w) = |X(t, w)|ejψ(t,w) (14)

ψ(t, w) = 6 (X(t, w) represents the Short time phase spec-
trum which is unwrapped. A Linear Predictive approach sim-
ilar to the Kalman Filter is tuned using the already estimated
Kk and Pk values to obtain the principal phase spectrum. Let
r(n) be the predicted sample, h(n) is the mean square value
of the difference between the actual value and its predicted
estimate.

sinθ(n) = r(n)/h′(n) (15)

The phase component obtained θ(n) is the estimated differ-
ential phase consisting of the required principle components.
This feature is essential in pitch determination and formant
extraction of the speech signal. The dominant harmonic set
and phase estimations complete the feature vector set.
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Fig.4 Database and Heuristics for Speech Recognition



She sells sea shells on the sea shore

(a)Observed Spike train

She sells sea shells on the sea shore

(b)Gabor Tuned Spectrogram
She sells sea shells on the sea shore

(c)Input Speech

Fig.5. Recognition results for the given sentence.

4. EXPERIMENTAL RESULTS

In the experiments conducted, a sampling frequency of 8 kHz,
frame size of the speech signal 100 to 500 samples was se-
lected. The data used for the experiments contained sentences
with similar sounding words, speech signal with varying noise
conditions. The sentence shown in Fig.5(a) is ”She sells sea
shells on the sea shore”. The figure shows the spike train
computed for the given input signal. The harmonics along
with the associated phase was used to identify the individual
components of the speech.

In Fig.5(b) the proposed Gabor algorithm is used to com-
pute the Enhanced spectrogram. The components are local-
ized in the time and frequency domain. It is seen that the har-
monics and phase values were consistent for the same word
sets under varying noise parameters, the Kalman filter esti-
mates were fine tuned as shown in Section 1. and the desired
output was obtained. The overall accuracy of the proposed
system for speech recognition shows positive results.

5. CONCLUSION

The noisy input speech signal is passed through a Kalman
filter and the estimated parameters were fined tuned using the
proposed design in order to obtain the desired result. This pro-
cess greatly reduces the time complexity of the recognition
system. The Gabor coefficients computed using the Arith-

 

 

Fig.6 Comparitive Results using FFT and AFT

metic Fourier Transform reduced the computational complex-
ity from O(N3) to O(N). The database under construction is
framed based on the system flow shown in Fig.4. The compu-
tation of dominant harmonics and the associated phase values
from the Gabor Transform is a novel approach and is found
to be effective for speech recognition.
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