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THE PROBLEM

The Dynamic Characteristics of Speech and Image signals have been commonly ex-

ploited in several Signal Processing Application Systems by using feature extraction tech-

niques, temporal filtering and several short-term Spectral and Cepstral representations.

These applications demand high speed operation and high accuracy levels. The intense

computational complexity of present analysis algorithms has been a deterrent to fulfill-

ment of these requirements. The Noise component is another important factor resulting

in pronounced degradations in the performance of the Signal Processing Systems. Several

algorithms and methodologies have been proposed to mitigate the effect of noise on the

accuracy and complexity of the signal analysis process. However these techniques are only

aimed at extracting or improving very specific parameters of the input signals, thus neces-

sitating the need for a composite system designed to work under near real-time conditions.

This proposal describes a novel approach for computationally efficient signal feature extrac-

tion using the Higher Order Statistics of the Gabor Transform - Gabor Polyspectra.

The conventional Gabor representation transforms the input signal into a discrete set of

time shifted and frequency modulated versions using the Fast Fourier Transform (FFT). Its

computational complexity is of O(NlogN). To further reduce this, the Gabor coefficients

are obtained through the Arithmetic Fourier Transform (AFT), which has a complexity of

O(N) real multiplications. The Higher Order Statistics are obtained from available sig-

nal information. This is then transformed to a multidimensional space using the proposed

Gabor Transform and the feature vector consisting of a set of dominant harmonics and

associated Gabor phase components is extracted. This feature vector has found useful ap-

plications in Speech Recognition and Image Segmentation Systems.
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A Parallelized framework for the Gabor Polyspectra algorithm has been proposed and

its application for Biomedical Imaging Applications has been discussed. The primary pur-

pose of the Parallel Model is formulate the database and the associated Neural System

required to model Vision Networks. The proposed system takes advantage of the fact that

the operations of Human Vision Network closely resemble that of the Gabor elementary

functions. This system has been one of the major research projects at the Waran Research

Foundation.
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CHAPTER I

ORIGIN AND HISTORY

1.1 THE BASIC SIGNAL ANALYSIS METHODS

1.1.1 Spectral Analysis

In basic terms Analysis means decomposing something complex into simpler, more basic

parts. With respect to real world entities we find that there is a physical basis for modeling

light, sound, and radio waves. This basis is dependent on the fact that these physical func-

tions are made up of various amounts of different frequencies. Any process that quantifies

the various amounts vs. frequency can be called Spectrum Analysis [1].

The Fourier transform of a function produces a spectrum from which the original func-

tion can be reconstructed by an inverse transform, making it reversible. The Spectrum

preserves the magnitude of each frequency component and its phase. This information can

be represented as a 2-D vector or a complex number, or as magnitude and phase. In graph-

ical representations, often only the magnitude (or squared magnitude) component is shown.

This is also referred to as a Power Spectrum. FFTs and the Power Spectrum [2,3] are useful

for measuring the frequency content of stationary or transient signals. FFTs produce the

average frequency content of a signal over the entire time that the signal was acquired. In

order to measure frequency information that is changing over time, joint time-frequency

functions such as the Gabor Spectrogram [4] are used.

Consider the application of Spectral Analysis on a random signal function. We find

that the Fourier transform of a random waveform is random [5]. Some kind of averaging is

required in order to create a clear picture of the underlying frequency distribution of the

random signal. The data is therefore divided into time-segments of a chosen duration -

Adaptive Sampling [6], and transforms (DFT) are performed on each one.
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1.1.2 Cepstral Analysis

Cepstrum analysis is a nonlinear signal processing technique with a variety of applications

in areas such as Speech and Image processing. It relies on the observation that a logarith-

mic signal spectrum is made up from the source and filter spectra added together [7]. The

procedure for Cepstral analysis is to take the inverse Fourier transform of the logarithmic

spectrum [8] and convert the signal back into the time domain. This time domain signal is

not the same as the original signal used. A Frequency domain version of the signal is com-

puted by further operating on the Cepstrum. The central part of the reflected Cepstrum

is removed, the part that corresponds to the source, and a Fourier transform is performed

to again generate a frequency domain version of the signal. This is manifested as a much

smoother spectrum than the original; the degree of smoothing depends upon the number

of Cepstral coefficients removed prior to the final Fourier transform.

In the case of speech recognition [10] for example, a filter bank is applied of which the

center frequency of each bank is scaled according to the Mel scale. This scale takes into

account the frequency resolution properties of the human ear. The inverse Fourier trans-

form of the log output of this filter bank yields the Mel Frequency Cepstrum Coefficients

(MFCC) [9]. The Cepstrum is also used for analysis of Biomedical Images [11].

1.2 TIME-FREQUENCY REPRESENTATIONS

We know that the Spectral density is a function of frequency and not a function of time.

However, the spectral density of small ”windows” of a longer signal may be calculated, and

plotted versus the time associated with the window. Such a graph is called a Spectrogram

Time Frequency Representation [12,13]. This is the basis for a number of spectral analysis

techniques [14,15] such as the Short-time Fourier transform [16], Gabor Transform [17],

Wavelets [19] and the Wigner-Ville Distribution [26]. Fig.1 shows the variations in the

accuracy and reliability of these techniques.
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Figure 1: Accuracy and Reliability of Time Frequency Techniques

1.2.1 Gabor Transform

The expansion of a signal into a discrete set of Gaussian elementary signals was originally

suggested by Gabor in 1946, and the analytic expression for Gabor coefficients was later

derived by Bastiaans [17]. An important property of the Gabor transform is that its coeffi-

cients reveal the localized frequency distribution of a signal or an image[18], instead of the

global frequency information as provided by the coefficients of the Fourier transform. This

has proven to be very useful for texture analysis [63], biomedical imaging [72], speech recog-

nition [60] and other areas. The study of the Gabor transform will be useful not only for its

own applications, but also for the understanding and applications of the wavelet transform

since the two transforms are different manifestations of the same group representations

theory.

1.2.2 Wavelets

A Wavelet is a kind of mathematical function used to divide a given function into differ-

ent frequency components and study each component with a resolution that matches its

scale [19]. The wavelets are scaled and translated into copies known as ”daughter wavelets”

of a finite length or fast-decaying oscillating waveforms known as the ”mother wavelets”

[20,21]. The Wavelet transforms have advantages over traditional Fourier transforms [22]

for representing functions that have discontinuities and sharp peaks, and for accurately

deconstructing and reconstructing finite, non-periodic and/or non-stationary signals.
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Wavelet theory is applicable to several subjects [23]. It is now being adopted in many ap-

plications by replacing the conventional Fourier transform. An important application is its

use for smoothing/denoising data based on wavelet coefficient thresholding. By adaptively

thresholding the wavelet coefficients that correspond to undesired frequency components,

smoothing and/or denoising operations can be performed. Wavelets have also enjoyed great

success in Data Compression, Nondestructive Evaluation, Biomedical engineering [24], Tur-

bulence Analysis and even Financial Analysis [21]. Further advancements have been made

resulting in the Wigner-Ville Distribution [25].

1.2.3 Wigner-Ville Distribution

The Wigner-Ville Distribution (WVD) is a signal transformation of an input time signal into

a joint time-frequency domain that provides an excellent characterization of an input signal

as well as its respective energy content [26]. In most cases the estimate of the Wigner-Ville

Spectrum (WVS) of any Gaussian continuous-time Stochastic processes is treated using

Cohen’s class of time-frequency representations of random signals [12,27]. The discrete

Wigner-Ville distribution can be implemented directly using standard Fast Fourier trans-

form techniques [28]. For a non-negative frequency resolution of N points, only an N point

FFT is needed. It is known that the WVD exhibits the highest signal energy concentration

[29] in the timefrequency plane for linearly modulated signals, but the major problems are

artifacts in the case of nonlinearly frequency modulated signals and the presence of cross-

terms for multi-component signals.

1.3 LIMITING FACTORS TO PERFORMANCE IN T-F DOMAIN

The signal representations that have been mentioned are far from perfect. They are designed

mostly under conditions where there is a trade-off between accuracy and computational time

delay. In this proposal we introduce a system model that meets the needs of several Signal

Processing applications with as few imperfections as algorithmically possible.
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The performance limiting factors in the Gabor transform are inherent in its complex

process. The Gabor elementary functions are not orthogonal to each other and an auxiliary

function has to be employed in order to obtain the exact Gabor coefficients, a task which is

computationally heavy. Another major disadvantage is that one has to divide by the Zak

transform of the window function in order to calculate the Gabor coefficients [30,31]. The

Zero theorem shows that if a function is continuous and decays sufficiently fast, its Zak

transform will be zero somewhere in the unit square. The result is that for many windows

of interest, including the Gaussian pulse, one will have to contend with either an analytic or

a computational singularity when attempting to divide by the Zak transform of the window

at some point in the domain of interest.

The limitations of Wavelets though not obvious, reveal themselves when used in various

applications. From a theoretical viewpoint, Wavelet series are not optimal for representing

images that contain objects with discontinuities along curves [32,33]. The existing Wavelet

Pyramid Schemes have only a fixed number of directional elements and are independent

of scale. With respect to scaling concepts, the traditional pyramids do not have highly

anisotropic elements. The disadvantages mainly lay in the choice of window function re-

quired and its applications.

The Wigner distribution has limitations for use in analyzing signals. Knowledge of the

entire signal is required to compute the Distribution and there is no existing fast algorithm

available to speed up the computation process. A Spectrogram based on the Wigner distri-

bution will show interference artifacts. This results in a Wigner distribution spectrogram

which shows noise in regions where there should be none. Comparative study between the

Adaptive Spectrogram and the Wigner-Ville class reveals the Spectrogram to be more ro-

bust [31]. The distribution is negatively affected by important cross-terms [34], which limit

its practical use. Cross-terms in most cases adequately reduce the smoothing operation of

the distribution over time. Also the data-window used in the Wigner-Ville performs a fre-

quency smoothing operation. We know that Fourier spectra are periodic with period equal
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to the sampling rate, while the data-window is periodic in frequency with period equal to

half the sampling rate. This may cause aliasing.

Considering the various Time-Frequency Representations and their Limitations, a Math-

ematical Model is proposed to overcome the inherent complexities. The model is based on

obtaining Higher Order Statistics for the Gabor Transform - Gabor Polyspectra. The Ga-

bor computations are reduced by replacing the FFT with a Number Theoretic Method to

compute the Fourier coefficients. The Proposed model has shown positive results when

applied to Speech Recognition and Image Segmentation. A Parallel implementation of the

proposed Gabor System has been modeled to overcome the computational complexity when

there a large number of inputs (Vision Networks).
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CHAPTER II

THE GABOR TRANSFORM

2.1 AN EFFICIENT GABOR ANALYSIS FRAMEWORK

The Gabor transform was chosen as it is one of the better schemes for signal representation

[18]. It decomposes the input signal into functions localized in both time and frequency,

enabling us to study the signal modulation. Its major advantage is that it achieves the

lower limit on the system entropy [18,35] which substantiates its use for a wide variety

of applications. The majority of receptive field profiles of the mammalian visual system,

speech synthesis mechanisms match well to this type of function [36]. The Gabor transform

has been used for speech recognition, texture segmentation, image compression, biomedical

image analysis and other areas as well.

2.1.1 Gabor Computation using the Arithmetic Fourier Transform

The conventional Gabor Transform [17,18,36,39] involves the multiplication of the input

signal by a function which is biorthogonal to a Gaussian window. The input signal is

decomposed and characterized by the respective time and frequency domain shifts. The

required biorthogonal function is obtained with the help of the Fast Fourier Transform

(FFT). This form of discrete Gabor transformation can be expressed in a matrix notation

[18,39]. The complete Gabor coefficients can be found by multiplying the inverse of the Ga-

bor matrix and the input signal. The Gabor matrix can be decomposed into the product of

a sparse constant complex matrix consisting of the Fourier Coefficients and another sparse

matrix which depends on the Gaussian window function.

Unfortunately, the biorthogonal function is nonlocal and the pre-multiplications involved

are computationally intensive. To overcome this, the biorthogonal function is computed us-

ing the Arithmetic Fourier Transform.
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Figure 2: Implementation of the Gabor Transform using AFT

Arithmetic Fourier Transform

The Arithmetic Fourier Transform(AFT) [40,41] computes the Fourier coefficients of a com-

plex periodic function. It is based on the number-theoretic concept of Mobius inversion [42].

The Inversion formula has the advantage of eliminating many of the multiplications associ-

ated with computing the discrete Fourier coefficients. Its computations proceed in parallel

and the individual operations are very simple. Except for a small number of scalings at

one stage of the computation, only multiplications by 0, +1, and −1 are required [40]. The

AFT needs O(N) real multiplications and O(N2) real additions with N being the number

of samples [43].

In the Gabor Transform, the Fast Fourier transform is used for computation of the

Biorthogonal function and its multiplication complexity is of O(Nlog2N). Using the FFT,

we find that the overall complexity of the Gabor Transform is O(NlogN) [37,38]. In this

thesis we propose an efficient Gabor expansion algorithm which replaces the FFT with the

Arithmetic Fourier Transform. The algorithm reduces the overall multiplication complexity

to O(N) as shown in the Fig.2.
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Figure 3: CPU Run time and Correlation Factor of Proposed Gabor Algorithm

The time complexity and correlation factor for the Gabor AFT coefficients is represented

in Fig.3. We notice that the run time is considerably lesser when compared to that required

to compute the FFT coefficients. As the number of samples increases, the run time (in

seconds) has decreased by more than half the time. Similarly the correlation between the

Fourier coefficients obtained through FFT and AFT increases as the number of samples

increases. Consider a speech signal containing 2000 samples, the graph shows a high value

of correlation between the coefficients. With increasing sample numbers the Gabor-AFT

model produces accurate results in faster time frames. The proposed Gabor expansion is

applied to the input signal to extract the feature vector consisting of the dominant harmonics

and the associated Gabor phase.

2.1.2 Gabor Phase Computation

Most state-of-the-art signal processing systems only utilize the magnitude of the Fourier

transform of the time-domain signal segments. This means that the corresponding Fourier

transform phases are discarded. However several studies [44,45] have indicated that it is a

positive effort to directly model and incorporate the phase into the signal analysis process.

We find that the phase obtained from a Fourier output cannot tolerate large changes in sig-

nal orientation, therefore a new local measure, referred to as the Gabor phase [46,47,48] has
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been developed. The Phase information of Gabor filters is found to be more discriminative

than that of the phase of the Fourier Transform. Similar to Fourier Coefficients, a Gabor

response has a magnitude and an argument. The phase argument of the Gabor signal is

determined by the ratio between the amplitudes of its quadratural components. This repre-

sents the unwrapped Short time phase components [45]. A Linear Predictive approach such

as the Kalman Filter is used to obtain the required Principal Gabor Phase Components.

This feature is essential in pitch determination and formant extraction of speech signals [49].

The Phase obtained from the Gabor filter takes advantage of the multi-resolution and

multi-orientation characteristics inherent in the filters. It can be used to group related Ga-

bor elements which simplifies the problem of target/background segmentation [46]. It also

has useful applications in face recognition [47], vision networks [48] and speech recognition

[49].

2.2 MATHEMATICAL MODEL - GABOR POLYSPECTRA

There are several general motivations behind the use of Higher-Order Spectra in signal pro-

cessing [50,51]. Some of them are:

(1) To Detect and characterize nonlinear properties of signals.

(2) To Identify and Reconstruct non-minimum phase systems.

(3) To Extract information due to deviations from Gaussianity.

We know that most of the signals in the real world are non-Gaussian and thus have nonzero

Higher-Order Spectra. It has been demonstrated [50] that a non-Gaussian signal can be

decomposed into its Higher-Order Spectral functions where each one of them contains dif-

ferent information about the signals. For modeling Time-series data in signal processing

applications, Second-Order Statistics (Power Spectrum) are exclusively used because they

are usually the result of least-squares optimization criteria [51]. In the proposed system

we take advantage of the properties of the Higher-Order Spectra in order to model the

Time-Frequency data obtained from the Gabor Transform, shown in Fig.4. The Gabor
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Figure 4: The Gabor Polyspectra Classification Map for a Discrete Signal.

Polyspectra thus obtained can to used in signal classification problems where distinct clas-

sification features can be extracted from the Higher-Order Spectrum domains.

2.2.1 Algorithm and the related Computational Complexity

Consider estimating the Higher-Order Spectra of a process when a finite set of measure-

ments are given. While these approximations are straightforward, sometimes the required

computations may be expensive despite the use of the Gabor-AFT Transform. We propose

the algorithm used for computation of the Higher Order Statistics using the Gabor Spectra:

Algorithm:

Let X1, X2....., XL be the available data set.

1. Divide the data set in N samples of M observations, i.e. L = MN

2. Obtain the mean/average of the N samples and subtract this value from the data

within the respective observations in order to center the information.

3. Assuming that xi(k), k = (0, 1, ..., L − 1) is the data set per sample i = 1, 2....N ,

obtain an estimate of the n-th moment sequence.

4. Average the estimate over all the N samples.

5. Perform the Gabor Transform and generate the n-th Order Gabor Polyspectra.
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The proposed Gabor Polyspectra preserves the true magnitude [52] and phase character-

istics [53] of signals but the process is in some cases computationally intensive due to the

heavy calculations involved in the moment estimations. Consider N data samples and an

estimate of the kth order, the time complexity is said to be O(Nk) [69]. A parallel model

has been discussed in the following sections to reduce this complexity. Also in our proposed

algorithm the 2-D AFT is used to compute the discrete Gabor coefficients. The disadvan-

tage with this system is the inherent non-uniform sampling constraint [43] in the AFT. This

constraint does not allow the complete reconstruction of the original signal. The problem is

dealt in the next section and the Post processing methods to overcome this have also been

proposed.

2.2.2 Inverse and Non-Uniform Sampling Issues

For the continuous variable generalized Gabor Transform, the reconstruction or the inverse

condition is straight forward [17,18] and it reveals a fundamental relation between the Gaus-

sian window function and their biorthogonal functions. Considering the proposed algorithm,

the inverse is first computed using two parameters separately - the Gabor Magnitude and

Gabor Phase. The results are given below:

It was found that the main problem with the reconstruction from magnitudes [54] is

that the set of all transforms with given magnitudes but arbitrary phases is not convex, in

contrast to the set of all transforms with given phases and variable magnitudes. Therefore,

the algorithm does not project onto convex sets, and there is no straightforward convergence

proof. However when using the Phase components, there are many positive results on the

reconstruction of random signals from the localized phase [55]. They also show convincingly

that the localized Gabor phase is more useful than global phase. It has been proved [54,55]

that reconstruction from phase factors is simpler than reconstruction from local magnitude.

We conclude that the complete inverse of a signal can be obtained by combining the Gabor

magnitude and the Gabor phase components.
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Further it is necessary to test the robustness of the system under non-uniform sampling

conditions [56]. The system was subject to a set of test vectors and then tested for accurate

computation of the Gabor coefficients. Multiple test vectors containing the same number

of coefficients were used. A Gaussian window of 16 seconds duration and centered at 0.8

seconds was employed by the AFT and the Zak Transform. The results showed that the

coefficients obtained are very different in both methods and they clearly do not represent the

Gabor Coefficients. There appears to be aliasing in the method which involves the AFT.

It is evident that the reconstruction of the signal is not possible under these conditions.

Therefore Post-processing methods must be employed to overcome the problems.

2.2.3 Post-Processing Methods to overcome Limiting Factors

Several methods of obtaining the time-frequency representations of a signal from its arbi-

trarily spaced samples have been discussed so far. The problem arises when reconstruction

of original signal is required. As mentioned before the non uniformity in sampling causes

aliasing of the reconstructed signal. This distortion becomes particularly significant in cases

when the sampling period after uniform sampling conversion is higher than what is required

by the Nyquist criterion. The following are some methods that can be used to overcome

this problem:

The simplest approach is to ignore the non-uniformity of sampling flow and relocate the

signal samples on a uniform grid. The advantage of using such a simplified approach is that

it allows the use of the standard formulation of discrete Gabor Transform. The problem

tends to correct itself. The signal re-sampling approach [57] is based on the use of direct

and inverse transforms. It involves the re-sampling of the signal from a non-uniform grid

to a uniform one on the basis of a pair of direct and inverse discrete transformations for

example - the general Discrete Fourier Transform and Inverse Discrete Fourier Transform.

The new sampling grid is uniform and it is formed by taking into account the highest spec-

tral frequency in the signal. However problems arise in rare cases when the number of new

uniformly spaced samples is greater than the number of original samples.

13



More accurate results can be obtained if signal interpolation [57] is performed before calcu-

lation of the Gabor Coefficients. In this case, to obtain the Time-frequency representations

without artifacts, the time intervals of the original sampling flow have to comply with the

Nyquist limit.

The Proposed Gabor Polyspectra System finds applications in a number of areas due

to the enhanced signal resolution and noise reduction properties. The next section deals

with applications of the Gabor Higher Order Statistics for Speech Processing and Image

Segmentation. A Parallel model of the system is proposed for applications in Biomedical

Signal Processing and Vision Systems.
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CHAPTER III

APPLICATION OF MODEL ON SPEECH AND IMAGE SAMPLES

3.1 SPEECH RECOGNITION

The System flow for the Speech Recognition System is as shown in Fig.5. The Windowed

Spectrum of the noisy Speech signal is first obtained and this is followed by the application

of the Inverse Fourier Transform. The coefficients obtained are used as the data-sets for

determining the Higher-Order Spectra. If the noise is gaussian [58], the cumulant of the

speech input is the cumulant of the clean speech signal. The same assumption can be if the

noise has a symmetric p.d.f. [59] which is true for most of real noises. This property helps

to reduce the noise factors and greatly increases signal resolution. The Statistical estimates

thus obtained are used to compute the required Gabor Coefficients [60,61]. The recognition

is based on the feature vector set obtained from the Gabor Polyspectra. The Dominant

Harmonics and Gabor Phase are used simultaneously to differentiate and determine the

spoken words.

In order to verify the validity of the algorithm described above we used a large num-

ber of test samples. The concentration was mainly to differentiate the similar sounding

words(Homonyms) in a sentence. In the tests conducted, the acquired feature vector was

Figure 5: Speech Signal Feature Extraction
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Figure 6: Gabor Spectra Obtained from the Test Sentences

used to set a threshold in order to separate these Homonyms. A sampling frequency of

8 kHz was selected and the frame size of the speech signal consisted of 500 to 1500 sam-

ples. The data used for the experiments contained speech signals recorded under varying

noise conditions and containing similar sounding words. For example, the test sentences

selected were similar to ”She sells sea shells on the sea shore”. Fig.6 shows the Gabor

Time-Frequency representation acquired for the test sentences. The harmonics along with

the associated phase were used to identify the individual components of the speech. It was

seen that the harmonics and phase values were consistent for the same word sets under

varying noise parameters. The overall accuracy of the proposed system for speech recogni-

tion shows positive results.

3.2 IMAGE SEGMENTATION

Image Segmentation is an important visual feature for a wide range of image processing

applications. Most of the earlier analysis techniques concentrated on statistical, geometri-

cal, and structural approaches, recently, model-based and signal processing techniques have

been explored [63,64]. The Gabor Transform has been found to show accurate results for

boundary and texture discrimination [63,64]. This is because the Gabor function is gen-

erally acknowledged to mimic some characteristics of the human cortical simple cells, and

therefore has been found to play a successful role in the area of texture analysis [63].
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Figure 7: Comparison of Gabor Magnitude and Phase Components for Boundary Detec-
tion

The analysis can be divided into two main stages: one in which the local computations

extract the statistical attributes of the image, and the second in which these measurements

are used for grouping and/or segregation. The developed mathematical framework is found

to be suitable for this purpose. The Gabor Polyspectra is applied to a set of images and

the respective magnitude and phase components are used for segmentation [65,66]. The

Fig.7 shows the application of the extracted features for the purpose of texture analysis,

grouping and segregation. The test gray scale images (A,B) are normalized in the range

[0-127], (C,D) in the range [0-255] and (E,F) in the range [0-511]. We notice that at lower

ranges (A,B) the acquired magnitude components produce clearer boundaries as compared

to that produced by the phase components. However at higher ranges (E,F), the phase

components produce significant results. The middle order ranges produce better results

when subject to preprocessing methods [65].

In comparison with the conventional methods the proposed algorithm is more efficient

due to the novel and successful utilization of the Higher-Order statistics of the Gabor

Transform. The Higher-Order Statistics have been found to show increased signal resolution

and reduction in noise artifacts. Also the proposed model for image texture analysis plays

an important role in understanding the psychophysical performance of the Vision Systems.
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CHAPTER IV

PARALLEL COMPUTATION OF GABOR COEFFICIENTS

4.1 GABOR POLYSPECTRA IN A PARALLEL LINUX CLUSTER

In an effort to further lessen the computational complexity of the System, a parallel model

of the Gabor Transform in a Linux Environment using MPI Libraries has been proposed.

The main applications of this proposal is to provide accurate results when the input signal

size is very large i.e. greater than 10,000, for example in Vision Networks [67].

Consider n to be the number of nodes, say 100, L to be the number of input samples -

10,000, M and N to be the respective frequency and time domain shifts - 100, 100. These

parameters are distributed to all the nodes and they are then segregated into two main

clusters. One computing the Gaussian Window Function, H and the other, the Arithmetic

Fourier coefficients, E. The H and E matrices obtained are multiplied with one another and

the inverse of the acquired matrix forms the required Biorthogonal function. On completion

of the inverse operation the two clusters are ready to receive the input samples. The inputs

are first divided into two segments and fed into the clusters in a sequential manner. The

Biorthogonal matrix is multiplied with the input samples to produce the Gabor coefficients.

On first look, the optimum solution might be to have as many nodes as possible [68,69],

but in reality this is not the case. A calculated trade-off between the number of nodes,

interconnectivities and specified data rate along with prior information about the input size,

sets the optimal functioning of the Parallel System. The basic framework in Fig.8 shows

the connections across the various nodes and accounts for the stability of the computations.
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Figure 8: Parallel Model for the Gabor Transform

4.2 APPLICATION FOR BIOMEDICAL SIGNAL PROCESSING

4.2.1 Tissue Characterization of Ultrasound Images

It is believed that different biological structures are composed of peculiar textures. If this

texture is reflected in the ultrasound image it should be possible to differentiate tissue com-

position by texture discrimination techniques. Most Ultrasound images of high-frequency

(30-40 MHz) are blurred in both the axial and lateral directions due to the finite resolution

of the imaging system [70]. A convenient model commonly used to represent this blurring is

to express each Ultrasound signal y(n) as a product of the system function h(n) and tissue

reflectivity function x(n). The additive noise term η must also be accounted for.

These acquired images can be analyzed using the Gabor Polyspectra Algorithm to over-

come the blurring effects and obtain the texture characteristics. First, separate (1-D) func-

tions for the axial and lateral profiles are to be estimated using the Higher-order spectral

technique [71]. This process is said to enhance the resolution of the Ultrasound Images and

reduce the noise artifacts of the imaging system. Subsequently, the Gabor Transform is

implemented on the estimated data sets, simultaneously in the axial and lateral direction.

This can be useful in discriminating the image textures [62]. It is conceivable that features
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such as hair follicles in the dermis and fingerprints on the surface of the finger can be more

clearly displayed.

4.2.2 Analysis of Myoelectric Signals

The Myoelectric Signal is the electric manifestation of neuromuscular activity [72,73] and

is collected non-invasively on the skin via appropriate electrodes. The complex signal is

stochastic in nature and depends on the anatomical and physiological properties of the

contracting muscle [73]. With regard to medical applications, it is well established that

the Surface Myoelectric Signal recordings from an amputees residual muscles can be used

to control prosthesis movements [73]. Various techniques have been employed for process-

ing these signals, such as auto regressive (AR) modeling, pattern recognition techniques,

discrete wavelet transform [72] and various artificial neural network architectures together

with other feature extraction schemes. Although the existing methods achieve high rates

of accurate classification, they require substantial computations.

The parallel implementation of the proposed Gabor Polyspectra algorithm can be used

to overcome these computational limitations. The Myoelectric Signals, detected using ap-

propriate electrodes, are subject to Feature Extraction and Classification using the proposed

algorithm. We can deduce that the Higher-Order Gabor Spectra will improve the signal

resolution and also decrease the variation [73] among different signals in the same class.

This enables us to classify the patterns more accurately.

4.2.3 Database Formation for Modeling Neural Networks

This work is inspired by the Brain Modeling initiatives at the Waran Research Founda-

tion [74]. The Vision Sensory Network is widely known to resemble the Gabor elementary

functions [62]. Based on this, a database is formed as shown in Fig.9, using the Gabor

Polyspectra, to train the Neural Network [75]. The defined parallel network model is im-

plemented to overcome the computational limitations.

The input signal is to be distributed among the nodes of the cluster and then subject to
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Figure 9: Database Formation for modeling Vision Networks

Higher-Order Spectral partitioning. The features are extracted and the recognition factor

is computed. The test signal vectors will include specific objects like cubes, spheres and

abstract 3-D shapes. The consistency of the recognition factor is to be plotted to obtain the

feasibility of the proposal in a parallel environment. Using the results of the parallel Gabor

implementation, the Higher Order Statistics aim to show promising results in modeling the

Visual Network.
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