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SUMMARY

This work is focused on the design and analysis of novel methods for exploration of a

reinforcement learning agent. We introduce a policy-based approach that learns to explore

meaningful aspects of decision-making problems autonomously and using human assis-

tance. The thesis we seek to demonstrate is that, policy-guided exploration for reinforce-

ment learning agents leads to faster convergence to the optimal policy than automatic

value-based and state-of-the-art learning from demonstration methods and is robust

to noisy human signals. This line of research raises questions about how to efficiently

explore the search space of a problem and how to balance the exploration-exploitation

trade-off inherent to reinforcement learning agents. To support the claim and address these

challenges, the main contributions of document are summarized below:

• Agent-guided Exploration from Human Demonstration - We learn a policy use-

ful for exploration from human demonstrations using supervised learning. The agent

uses statistical properties of regression algorithms for reinforcement learning to com-

municate its model uncertainty. This allows the human to provide samples useful

from the agent’s perspective. The learned exploration policies leads to faster con-

vergence to the solution than learning from optimal demonstration and model-free

exploration strategies. We show the effectiveness of this approach on two game do-

mains with high-dimensional continuous states, extended goal horizons and sparse

rewards.

• Autonomous Agent-guided Exploration - We build on the work on learning explo-

ration policies using human demonstrations to show how we can learn such policies

autonomously. The agent, guided by the statistical measures, solves for a policy that

helps the agent explore. Using the learned policy for exploration helps the agent

obtain the optimal policy efficiently and with improved sample complexity over ex-

isting approaches. These are demonstrated in a classical control problem and a high-

xv



dimensional game domain.

• Policy Shaping with Humans - This work presents a probabilistic approach to com-

bining human signals with a reinforcement learning model. We model human feed-

back as a policy signal and when utilized with Bayesian RL for exploration, show

that we can solve the decision-making problem with fewer parameters than state of

the art methods and are robust to noisy human input.

• Exploration in Monte Carlo Tree Search using Action Abstractions - In this

work, we provide an alternate interpretation to exploratory human demonstrations.

We show how human demonstrations, when instantiated as temporal action abstrac-

tions, can be used to overcome the difficulties of Monte Carlo reinforcement learning

methods.

xvi



CHAPTER 1

INTRODUCTION

We are currently living in a world where technology forms an integral part of people’s

lives. We interact with them in various forms, digital as well as physical systems. They are

designed to improve the quality of our lives in different ways from transportation, security

to health care, education and communication. Of particular interest in this document is the

topic of automation. Over the years we have designed systems to automate several prob-

lems which otherwise would require enormous amount of human-hours to parse through,

for example in the construction of cars, printing of newspapers. The automation is focused

on removing human involvement and making the process fast, accurate and more efficient

overall.

Automation is helpful for tasks that involve hard manual labor and more recently can

also be used to solve complex problems, specifically problems that involve reasoning and

intelligence. Designing and analyzing systems that can automatically solve such problems

has been the interest of many industrialists, scientists, researchers and philosophers. It

falls broadly under the topic of Artificial Intelligence (AI), i.e. designing an artificial sys-

tem with abilities to reason and solve problems. The topic of AI refers to all aspects of

intelligence, namely reasoning, knowledge representation, learning, planning, creativity,

perception, social interactions, language, motion, etc.

In this work we particularly focus on the topic of learning or machine learning. It is

the task of providing machines the capacity to learn and adapt to solve problems. Machine

learning has been an active area of research for several years and forms an essential part

of present-day technological systems, for example face recognition in photos, converting

speech to text, autonomous driving and numerous other examples.
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1.1 Machine Learning

Machine learning is a data-oriented approach to problem-solving. For a given problem,

data is collected and mathematical models are built from the data to recognize predictive

patterns that help in solving the underlying problem. Machine learning falls broadly in

three categories: supervised learning, unsupervised learning and reinforcement learning.

In the most common setting, supervised learning, data is collected in the form of attributes

which describe the problem under different conditions accompanied with a label that we are

interested in predicting. Data of this form is fed into a learning algorithm which generates

a model capable to making the same predictions as those made in the data it was trained on

as well as data it did not get to learn from. In this approach, the algorithm learns a general

model that can make useful predictions. An example is to predict the objects in an image

from a set of known objects. Unsupervised learning refers to the case where the data used

to learn from is not accompanied with a label (is unsupervised). In this case, the learner

is tasked with recognizing patterns without being explicitly being provided the labels it is

expected to be able to reproduce. Problems involving grouping or clustering largely fall in

this category where the data is not assigned a explicit label. Lastly reinforcement learning

is a formulation useful to solve sequential decision-making problems. These are problems

that require algorithms to consider the temporal effects of decisions being made over long

periods of time. In this dissertation, we focus on solving decision-making problems using

reinforcement learning.

1.2 Deep Learning

Deep learning [1] is an approach to machine learning which focuses on building multi-

layered encoders of data to facilitate automatic abstraction and better generalization. This

approach has been popularized recently using neural networks by designing network ar-

chitectures with multiple (hidden) layers between the input data and the output predictions.
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The advantages offered in this approach are that the algorithm learns to automatically trans-

form the data into representations that are better suited to make the required predictions,

specifically when dealing with non-linear relationships between the input data and predic-

tions. Deep Learning has had a wide variety of success with image data [2], text [3], audio

[4], robotics [5] and a host of other areas including sequential decision-making problems.

1.3 Reinforcement Learning

Reinforcement Learning (RL) [6] is the field of research focused on solving sequential

decision-making tasks modeled as Markov Decision Processes. Researchers have shown

RL to be successful at solving a variety of problems like games (Backgammon [7], Go

[8], Atari [9], StarCraft [10]), robot tasks (soccer [11], helicopter control [12]) and system

operations (inventory management [13]).

The reinforcement learning method is similar in essence to training a pet using pos-

itive reinforcement. Every good action taken is rewarded and over time that behavior is

reinforced and generalized across different situations. In many ways, this is how we train

computer agents using reinforcement learning. A task is defined by a reward function

which specifies what is good and bad. Using such a the task description, a mapping of

situations to actions is learned that informs the learner of the actions to take such that the

rewards accrued over time are maximized. More recently, reinforcement learning methods

have gained a lot of attention due to the success of combining RL and deep learning as deep

reinforcement learning. The algorithms based on this approach make use of the generaliza-

tion and abstraction properties of deep learning to solve complex non-linear optimization

problems for RL.

1.4 Research Challenges

One of the challenges often faced when applying reinforcement learning methods to com-

plex problems is that of sample complexity. The amount of data required to train a good

3



model requires exploring a potentially large high-dimensional non-linear state space which

in the worst case can be prohibitively expensive and in the best case handled with large

compute and smart algorithms over a long period of training time. In the RL literature this

search is related to balancing the exploration-exploitation trade off - a central problem in

Reinforcement Learning and the main topic of this dissertation.

The exploration-exploitation trade off here refers to the problem of deciding what to

explore in the search space of the domain and when to exploit the knowledge gained from

what has been searched. In the most common use-case, the reason this problem arises is

that RL approaches rely on obtaining samples useful for learning the underlying structure

without always using smart methods to explore the state space. Traditional methods either

use a fixed (uniformly random) policy or value-based metrics [14, 15] that in some cases

can result in redundant and/or unsafe exploration. More recently, researchers have designed

several measures and heuristics to help tackle this challenge including visitation counts

[16], sampling [17], random exploration [18], intrinsic motivation [19, 20] and model-

based approaches [21, 22].

A combination of smart exploration along with careful design of the learning algorithm

and its parameter can be effective solution to reinforcement Learning problems. In this

work, we tackle the challenge of smart exploration in RL, by using human interaction and

autonomous methods.

1.5 Hypothesis and Goals

The hypothesis we make in this dissertation focuses on proposing alternate approaches to

exploration. We hypothesize that an approach focused on learning to explore as policies

directly helps overcome some of the computational challenges related to exploration. Ad-

ditionally we hypothesize that such an approach when used in the interactive setting with

information from people can be robust to noisy information from humans.

We present policy-based methods that serve to

4



1. Bias an RL agent’s exploration to cover the search space of the domain efficiently

2. Balance the exploration-exploitation trade-off for an RL agent learning from human

signals

In designing an exploration policy for sequential decision-making problems, it is im-

portant to help the agent reach parts of the search space that are necessary to model in order

to solve the problem. These include guiding the agent towards noisy, stochastic regions of

the problem as well as regions of high reward.

To facilitate exploration in these parts of the domain, we design autonomous and in-

teractive methods. The autonomous method poses the optimization function as a linear

regression problem and use relevant measures [23] to help identify influential regions.

Such an approach has the advantage of learning to explore the domain from the agent’s

perspective while taking into account the underlying representation, the RL algorithm as

well as the problem definition. We follow up with using information humans (both ma-

chine learning experts and non-experts) to help the agent explore. Specifically we utilize

their knowledge of the rules of the domain and the optimal behavior and to acquire in-

formation that would lead the agent towards influential regions of the search space. The

goal is to show how policy-based approaches autonomous and interactive, are able to solve

long horizon problems using exploratory demonstrations while outperforming traditional

exploration and interactive learning methods.

1.6 Contributions

The thesis statement for the work is: Policy-guided exploration for Reinforcement Learn-

ing agents leads to faster convergence to the optimal policy than automatic Reinforce-

ment Learning and state-of-the-art Learning from Demonstration methods and is ro-

bust to noisy human signals.

First, we address the concern of biasing exploration for RL agents towards efficient
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learning. We present a policy-based approach called Exploration from Demonstration

(EfD) that learns a stationary exploration policy using human demonstrations. We show

how using such a policy for exploration provides convergence speed-ups. We then improve

EfD, using concepts of active learning, to make it sample efficient. We use the inductive

bias of RL algorithms to provide feedback to the user about the algorithm’s uncertainty.

Using this approach, agents are more likely to acquire samples that are useful from the

algorithm’s perspective.

We follow up on this work by relaxing the requirement of human/oracle information

from the EfD algorithm and present an approach that can autonomously learn an explo-

ration policy. The policy is constantly updated based on the progress of the learner and is

able to guide the agent towards influential regions of the state space. We also show how

this approach can be used in deep reinforcement learning algorithms to solve Atari games

in a straightforward manner.

We then tackle the problem of balancing the exploration-exploitation trade-off in RL.

Bayesian RL algorithms have been used to address this problem and have had some mea-

sure of success on simple domains. We present a probabilistic method called Policy Shap-

ing that combines human evaluations with Bayesian Q-learning. We show how this ap-

proach is robust to noisy, sub-optimal human signals, learns when and where to explore and

provides performance speedups. Unfortunately due to the nature of Bayesian Q-learning,

Policy Shaping is limited to small domains.

Finally we present an approach that makes use of some of the inherent structure in

the exploratory human demonstrations to assist Monte Carlo Tree Search (MCTS) algo-

rithms in exploration. We show how the demonstrations can be interpreted as temporal ac-

tion abstractions (specifically options and constraints) and show how when combined with

MCTS can be used to overcome the algorithm’s limitations and efficiently solve large-scale

problems. Overall we show how using policy-based methods to bias exploration provides

performance speed-ups, is sample efficient and outperforms value-based methods.
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We implement our methods on popular arcade games and control problems and high-

light the performance improvements that can be achieved using our approach. We show

how this work on policy-based exploration autonomously and using humans to help agents

efficiently explore sequential decision-making tasks is an important and necessary step in

applying reinforcement learning to complex problems.

1.7 Structure

This dissertation is organized as follows: Chapter 2 provides details on relevant back-

ground for this dissertation, detailing concepts in reinforcement learning and related re-

search works. Chapter 3 introduces a policy-based approach to exploration and how it can

be combined with human information. Chapter 4 directly builds on Chapter 3 showing

how we can automate exploration without the need for human help. Chapter 5 focuses on

tackling the problem of exploration and exploitation by using a Bayesian approach to RL

in combination with human binary critique. Finally we show how general policy-based ap-

proaches can scale to solve large problems with long horizons and sparse rewards by using

them to overcome the limitations of monte carlo tree search.

1.8 Domains

Here we provide descriptions of the domains that are used for experiments in this disserta-

tion. These include popular arcade games as well as classical control problems.

Gridworld This is a basic domain popularly used in reinforcement learning papers as an

instructional domain to help elucidate key ideas where relevant. It is a typically setup as a

grid of squares either as a square or a rectangle. There are four actions that the agent can

take to access the four cardinal directions. The effects of the actions may be deterministic

or stochastic The reward function includes a step cost for every step taken a goal reward

fr landing in the goal cell which is predefined. Transitions leading into the bounding walls
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(a) PacMan (b) Frogger

Figure 1.1: Sample maps for PacMan and Frogger game domains showing the agent and
non-playable characters.

keeps the agent’s state unchanged. An episode starts with the agent randomly placed in the

grid and stops when the agent reaches the goal.

Pac-Man consists of a 2-D grid with food, walls, ghosts, and the Pac-Man avatar (see

Figure 1.1a). The goal is to eat all the food pellets while avoiding moving ghosts (+500).

Points are also awarded for each food pellet (+10). Points are taken away as time passes

(-1) and for losing the game (-500). The action set consisted of the four primary cartesian

directions. The state representation included Pac-Man’s position, the position and orienta-

tion of the ghost and the presence of food pellets. There exist PacMan maps that have long

horizons to complete the problem, making it a suitable testbed for our models. 1

Frogger consists of a 2-D map with moving cars, water hazards, and the Frogger avatar

(see Figure 1.1b). The goal is to navigate from the bottom to the top of the grid while

avoiding the cars and water pits (shown as dark squares in the top row). Each car drives

one space per time step. The car placement and direction of motion is randomly determined

at the start and does not change within an episode. As a car disappears off the end of the

map it reemerges at the beginning of the road and continues to move in the same direction.

The cars moved only in one direction, and they started out in random positions on the road.

1The version of PacMan we used is an open-source implementation available online at http://www-
inst.eecs.berkeley.edu/ cs188/pacman/pacman.html
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Figure 1.2: A snapshot of the Cart Pole control problem.

Each lane was limited to one car. The action set consisted of the four primary cartesian

directions and a stay-in-place action. Within an episode, the transitions are deterministic.

The reward function is +1000 for reaching the goal, −100 for dying (directly hitting a car,

crossing over a car, falling into water) and 0 everywhere else. An episode starts with the

agent in a random position in the bottom row and stops when the agent dies or reaches

the goal. Frogger lends itself to scaling to multiple sizes, making it useful to test how

algorithms scale. Further domain details relevant to the experiment will be described in the

relevant chapters.

Cart Pole The goal of this domain is to balance a pole on top of a movable cart for as

long as possible. The domain presents a challenge because the agent is required to learn

a policy that will keep it balanced forever. The reward function, even with large amounts

of discounting must continue to contribute towards learning such a policy. The agent has 3

actions in the form of forces that can be applied to the cart, [−10N 0N 10N]. The forces are

noisy - a random number is uniformly sampled from [−2 2] and added to the force. The

reward function is 1 for balancing the pole and a 0 penalty for failing to do so. We limited

the required balancing time to 1000 steps. The raw state space is 4D and consists of the

position and velocity of the cart along with the angle and angular velocity of the pole.
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CHAPTER 2

BACKGROUND AND RELATED WORK

In this chapter we provide a more formal introduction to reinforcement learning and the al-

gorithms used to solve decision-making problems. We provide details on the existing work

in research topics relevant to this dissertation, namely - exploration in RL and interactive

learning systems.

2.1 Reinforcement Learning

Reinforcement Learning (RL) defines a class of algorithms for solving problems mod-

eled as a Markov Decision Process (MDP). An MDP is specified by the tuple M =

〈S,A, T,R, γ〉, which defines the set of possible world states, S, the set of actions available

to the agent in each state, A, the transition function T : S ×A→ Pr[S], a reward function

R : S × A → R, and a discount factor 0 ≤ γ ≤ 1. The goal of a reinforcement learning

algorithm is to identify a deterministic, π : S 7→ A or stochastic policy, π : S 7→ Pr[A],

which maximizes the expected reward from the environment.

For a given MDP, the value function V π(s) represents the expected long-term reward

(utility) of being in state s and following policy π thereafter. It is defined as

V π(s) =
∑
a

π(s, a)[R(s, a) + γ
∑
s′

T (s, a, s′)V π(s′)]

We also define the Q-function or action-value function Qπ(s, a) as the expected long-term

reward of taking action a in state s, transitioning to s′, and following policy π thereafter.

Mathematically, the Q-function is computed as

Qπ(s, a) = R(s, a) + γ
∑
s′

T (s, a, s′)
∑
a′

π(s′, a′)Qπ(s′, a′)
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The optimal state-value function is V ∗(s) = maxπ V
π(s), the optimal action-value function

is Q∗(s, a) = maxπQ
π(s, a), and the solution to an MDP is any optimal policy π∗, which

maximizes the value function for every state.

Several algorithms have been designed to solve reinforcement learning algorithms -

dynamic programming, temporal difference and Monte Carlo methods. Dynamic program-

ming methods are guaranteed to find the optimal solution assuming they have access to the

MDP, specifically the transition and reward function. Temporal difference learning algo-

rithms solve the MDP by interacting with the environment and making incremental updates

to the solution. They are guaranteed to converge under general stochastic approximation

conditions. Monte Carlo methods are suited to handle large problems by solving for the

optimal policy given the current state. This approach is independent of the size of the state

space. In this work we focus on temporal difference learning and Monte Carlo methods.

2.2 Temporal Difference Learning

Temporal difference learning defines a class of algorithms that learn the optimal value

function online by directly interacting with the MDP. The algorithms do not assume di-

rect access to the transition and reward function and as such only have access to samples

from them. A set of transitions made by the RL agent from a starting state to any terminal

state comprises a single episode. Every transition made by an RL agent is comprised of

〈s, a, s′, r〉. The agent takes action a in state s, receives reward r and transitions to state

s′. Each such transition is a sample of the transition and reward function of the underly-

ing MDP. Q-learning [] is a temporal difference algorithm and perhaps one of the most

commonly used methods in RL. Q-learning attempts to find the optimal Q-value function,

Q∗(s, a), by using a incremental recursive approach as shown here,

Q(s, a) = Q(s, a) + α(R(s, a) + γmax
a′∈A

Q(s′, a′)−Q(s, a)) (2.1)
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Algorithm 1 Q-learning
repeat(for each episode):

Initialize s
repeat(for each step of episode):

Choose a (ε-greedy action selection)
Take action a, observe R(s, a), s′

Update Q(s, a)
s← s′

until s is terminal
until end of learning

Here α 7→ [0, 1] is the learning rate. The error term (inside the parenthesis) is called the

TD-error or temporal difference error and represents the current error estimate of learning

algorithm. The Q-learning algorithm is described below.

The agent selects actions in every state and updates the Q-function. Here the Q-function

is stored in a tabular form of size |S| × |A| The algorithm is guaranteed to converge for

a finite state space under stochastic approximation conditions and assuming every state-

pair is visited an infinite number of times. Empirically the algorithm arrives at the optimal

policy in finite time.

2.2.1 Exploration-Exploitation

An important step in temporal-difference learning algorithms like Q-learning is in how

actions are selected at every step. This aspect is the main focus of this research. The

goal of the RL agent is to find the optimal value function by visiting states and trying

different actions. Searching for the RL solution creates a dilemma for an RL agent. At

every decision step, the agent has to decide where to search or whether it has completed

the search. The former is referred to as exploration while the latter is called exploitation.

Thus the agent has to decide whether it has all the information to make the optimal decision

or explore more in search of the optimal solution. The dilemma created here is called the

exploration-exploitation dilemma and is a crucial aspect of every RL algorithm. The ideal

RL algorithm balances this trade-off at every step and will arrive at the solution taking the
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optimal number of steps.

There are several approaches in the existing literature that describes heuristics useful

to tackle this dilemma. We provide a review of these approaches below. For the tabular

case, a brute force approach of trying every action in every state an infinite number of

times will guarantee the learning algorithm converges. In this work we tackle the problem

of exploration - guiding the agent to different parts of the MDP which might lead to the

optimal solution. We also tackle the role of human input in balancing the exploration-

exploitation trade-off.

At this point, we would like to note that Q-learning is an off-policy algorithm. The

algorithm makes recursive updates assuming that when the agent reaches the next state s′,

the optimal action will be chosen. However this is not always the case as the agent can

explore and choose an action that could be suboptimal in s′. This is important aspect of

Q-learning as it allows the agent to take random actions with the goal of exploring while

always learning about the optimal value function.

2.2.2 Function Approximation

When dealing with large and/or continuous domains, it is often intractable to maintain

a tabular representation of the Q-function. In such cases we use Q-learning with linear

function approximation [24]. The Q-function is represented as a linear function of state-

action features, Q(s, a) = φ(s, a)T θ. Here φ(s) provide a feature-based representation of

a state in an MDP. We can obtain φ(s, a) by duplicating the features φ(s) for all actions

and only activate the ones for the action under consideration. For example if |A| = 4,

φ(s, 3) = [0,0, φ(s),0]T . For every transition, the Q-learning algorithm updates its weight

vector, θ using first-order gradient methods in the following manner:

δ = R(s, a) + γmax
a′∈A

[φ(s′, a′)T θ]− φ(s, a)T θ

θ = θ + α δ φ(s, a)

(2.2)
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The error, δ is the Temporal Difference (TD) error (also loosely referred to as Bellman

error). The algorithm, while not guaranteed to converge in the general case, is found to

perform well in practice.

2.3 Monte Carlo Methods

Monte Carlo methods are a general approach to MDP planning that use online Monte-Carlo

simulation to estimate Q-values. Monte Carlo Tree Search (MCTS) is one such algorithm.

The basic observation behind MCTS algorithms is that for MDPs with γ < 1, there is an

effective horizonH beyond which rewards do not significantly affect the optimal policy for

the agent’s current state. This places a theoretical (though perhaps still intractable) bound

on the number of steps that must be considered to accurately estimate the Q-values of the

current state.

MCTS algorithms perform a forward search from the current state, selecting and branch-

ing on actions and possible transitions from P (s′|s, a), out to some depth d. From this

search, we can estimate the d-horizon Q-values:

Qd(s, a) = R(s, a) + γ
∑
s′

T (s, a, s′) max
a′

Qd−1(s′, a′) (2.3)

where Q1(s, a) = R(s, a).

Note that Equation 2.3 requires iterating over both the set of actions and possible tran-

sitions in the MDP. The number of possible transitions defined by T (s, a, s′) is |S|, the

total number of states; however, Kearns et al. 2002 showed that it is possible to obtain

ε-optimal Q-value estimates for the current state from a set of sampled transitions, and that

the number of samples C per state was independent of |S|.

Unfortunately, MCTS remains exponential in the depth of the tree. The sample com-

plexity of uninformed MCTS is then O(|A| ∗ C)H [25], corresponding to a depth-H tree.

To address the exponential blow-up in H , practical MCTS implementations must typically
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truncate the tree expansion at some depth or time threshold, and approximate the values of

the leaf nodes by evaluating a fixed (possibly random) “roll-out” policy.

Monte Carlo methods have desirable properties when tackling large problems, however

as explained they have a search problem that grows exponentially. In such a case, devel-

oping smart ways to truncate and explore the tree is useful and even necessary for MCTS

to have a powerful impact on real problems. In this work, we will focus on what kind of

biases are useful for exploration in MCTS and how we can instantiate and utilize them.

2.4 Exploration in Reinforcement Learning

Exploration in RL is commonly achieved using two methods: ε-greedy and softmax action

selection. In ε-greedy action selection, exploration is performed by uniformly sampling a

random action with probability ε and the current best action (greedy action selection) with

probability 1 − ε. The choice of ε is left to the designer. In some cases, a decay schedule

is used where the value of ε is decayed over time as the agent gains more domain experi-

ence. Softmax action selection takes a more informed approach to exploration. Instead of

sampling a random action, the actions are weighted according to their respective Q-value

estimates and sampled from the resulting distribution. The most common implementa-

tions use a Boltzmann distribution in the following manner: πB = eQ(s,a)/τ∑|A|
a=1Q(s,a)/τ

where τ

is a positive temperature parameter. A higher temperature value results in a more uniform

distribution while a lower value results in greedy action selection. Besides using these

standard approaches, there are several automated ways of exploring in RL.

Rmax [26] was an automatic approach introduced to perform exploration. It stems

from the idea of optimism in the face of uncertainty. The agent is motivated to maintain

visitation rates to states and attempt all actions that weren’t tried before. The approach per-

forms well in practice, however R-max scales exponentially in the number of state variables

which makes it intractable for sufficiently large problems. There are several value-based

methods like UCB [14], its variants [65, 27], Bayesian approaches [28] studied in the con-

15



text of multi-arm bandits, that perform effective exploration by maintaining statistics about

changes in the value function and the number of times state-action pairs have been visited.

While successful in smaller domains, these approaches run into sample complexity issues

when dealing with high-dimensional long horizon domains we aim to solve. Model-based

methods [15, 29, 30, 31] have had success in several domains, specifically in robotics where

the dynamics of the robot and the environment they are acting in are either already known

or a part of learning algorithm. These methods however are sensitive to any inherent noise

and stochasticity in the model and can overfit to the errors in an imperfect model.

A smart exploration method was proposed by Gehring and Precup [32] which uses the

residual (TD error) as a reward for a Q-function, whose implied policy is then used for

exploration. The intuition behind this approach being that state-action pairs that have high

residuals should be visited and tried more often. This method relies on stable estimates of

the residual. We adapt a version of this approach in our experiments. Using an internal

reward function [33] is an interesting approach to exploration in RL. In this method a

user is required to design a reward function for skill learning which is often non-trivial.

While the authors provide empirical results on small-sized domains, the idea presented is

promising and warrants further exploration. An approach relevant to work presented in this

dissertation is that of Active RL [34] where the authors model the problem as a POMDP.

They model the sensitivities of the policy to the unknown transition and reward function

and build exploration strategies focusing on these aspects of the problem. This method

relies on using Newton’s method to solve the problem until convergence (which cannot be

guaranteed) and they need to solve the MDP numerous times to test the sensitivity. The

work authored by Akiyama et al. [35] is similar to out work, where they leverage concepts

of least squares approaches to guide exploration in policy iteration methods. The main

difference is that the approach they design requires the problems to have certain properties

with respect to the reward distribution and as such it is not directly comparable.

Related to the work presented in this dissertation is the notion of intrinsic motivation

16



[36]. The idea is for the learning agent to direct its sources of reward and optimize an

intrinsic function. There are several measures that can be used to define such a intrinsic

function ranging from uncertainty [37], curiosity [38], information gain and empowerment

[20]. In each case, the agent uses a specific criteria to optimize and intrinsically motivate

it. In addition to this, the agent uses an external sources of reward, often times related to

the problem definition as extrinsic motivation. Breaking down the sources of reward in this

way allows the agent to focus and optimize them separately. This approach has had a lot of

success in skill learning [39, 40, 41] for reinforcement learning agents. The survey paper

on intrinsic motivation [42] provides of greater detail on the topic.

2.4.1 Deep Reinforcement Learning

Deep reinforcement learning has seen a lot of recent success in solving complex game

domains and robot related problems. Deep Q-learning [43], one of the initial approaches

in this space, focused on using deep neural networks for value function approximation

combined with experience replay and reward clipping to provide human-level performance

in Atari games. Algorithms like DQN utilized traditional approaches to exploration (ε-

greedy, softmax, etc.) and did not primarily focus on dealing with related challenges.

Since this result, a variety of deep RL methods have been developed utilizing the actor-

critic architecture.

Trust-region policy optimization [44] and proximal policy optimization [45] are ex-

amples of this. The approach uses the KullbackLeibler (KL) divergence criteria to ensure

monotonic policy improvement by using a local approximation of the expected reward. The

use of trust regions can potentially help exploration, though it focuses on stable generaliza-

tion and policy improvement. Deep deterministic policy gradients [46] is an off-policy al-

gorithm designed for continuous control with deep RL. Exploration in this case is achieved

by adding noise sampled from a predefined noise process to the actions. There is flexibility

here in being able to add noise from intelligent sources that have knowledge of the domain.
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This approach has been found to work well in practice. Soft actor critic algorithm [47] takes

a principled approach to combining generalization and exploration for deep reinforcement

learning. The algorithm modifies the reward function by taking in to account the entropy

in the critic and actor update steps. The approach makes use of a scaling parameter which

controls the balance between exploration and exploitation. Experimentally this parameter

has been found to sensitive and hard to tune for different domains.

With improvements in algorithms, several approaches have been developed that focus

primarily on exploration for deep RL. These include Bootstrapped DQN [48] which relies

on starting with an initial random policy, samples a value function from its posterior and

uses bootstrapping to approximate the true value function. Depending on the prior chosen,

the algorithm helps the agent explore diverse aspects of the state and action space and

experiments reveal that the extent of exploration depends a great deal on the prior chosen

to compute the value function. Random Network Distillation [18] computes exploration

bonuses from the predictions error of a random neural network. The approach shows that

a relatively simplistic approach can help the agent explore novel parts of the state space.

The motivation here is that the errors will be low on states that have been visited while

higher on novel states. Another similar approach is count-based exploration [16] where

hashmaps are maintained for all visited states and actions along with the number of times

they have been visited. This is then used as a bonus to drive the agent to reach novel aspects

of the domain. Several of these approaches drive exploration by the notion of novelty. The

intrinsic curiosity [49] approach promotes exploration via curiosity. It formulates curiosity

as the ability to predict the outcomes of its actions in a learned embedding of the world.

The errors in its prediction are used as reward to guide the agent towards exploring these

regions of the state-action space.

Some of the most successful methods in deep RL recently include AlphaGo [50],

MuZero [8] where monte carlo tree search methods are used to plan online and explore

either by random action selection or by using heuristics (like UCB [14]). These methods
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are strong function approximators and have done well given sufficient training time and

data.

2.5 Hierarchical Reinforcement Learning

Action abstractions like Options [51] were introduced in the hierarchical reinforcement

learning literature as a principled approach to learning from temporally extended actions.

They instantiate policies which represent different sub-tasks for a problem and use them

to accelerate planning. Constraints introduced more recently [52] instantiate policies that

capture negative outcomes in a domain, by looking over multiple timesteps, and use that

information to guide action selection for the agent. Guliz and Feigh [53] were able to

show that humans solving problems (specifically game domains) by using these action

abstractions. These approaches have been used to solve problems independently [54] and

together [55].

There have been other methods introduced in the literature that have approached the

problem of combining different forms of action abstraction. One approach is the Concur-

rent Actions Model [56, 57] which formally describes a framework where an agent plans

over concurrent temporally extended actions. These actions have different kinds of termi-

nation schemes which are similar to abstractions used in our approach. In their work, they

highlight that the bottleneck for their approach is an efficient way of searching through

the space of multi-actions that can be run in parallel. Our PGSS algorithm aims to solve

exactly that problem. [58] constructs different types of skills and uses Q-learning to learn

domain specific skill combinations. We note that in their work it is not clear how non-

terminating skills can be utilized in the Q-learning framework. Overall while our approach

has the same motivation as theirs, the intelligent use of the action abstractions in MCTS

helps to overcome the exploration complexities of Q-learning. Recent work closely related

to ideas presented in this dissertation [59] use options as action abstractions in MCTS to

solve partially observable MDPs. While their method does not utilize constraints as action
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abstractions, they show advantages of temporal actions for MCTS planning.

Taking advantage of the action abstractions as domain knowledge includes the cost of

defining them for the problems we would like to solve. There are several methods that aim

to solve the problem of instantiating options [60, 61, 62, 63, 64] and constraints [52] either

automatically or using human input. We add that devising automated ways of instantiating

these abstractions is not the main focus of our work. We will show in our experiments

that our incorporation of domain knowledge in into MCTS achieves compelling gains over

complex problems that potentially offset the initial computations spent in instantiation.

2.6 Monte Carlo Methods

Algorithms such as Upper-Confidence Trees (UCT) [65] and Forward Search Sparse Sam-

pling (FSSS) [66] attempt to generate the bias by using relative Q-values. The intuition

is that if we had high confidence in Q(s, a1) > Q(s, a2) for two actions a1, a2, obtaining

further samples from s, a2 would be wasteful: they cannot change the Q-value of s. From

this we see that the best case search policy is in fact the optimal policy π∗, as it wastes

no samples on sub-optimal trajectories. The search policy can have a significant role in

the complexity of MCTS: with an optimal policy, the required number of samples for an

accurate Q-estimate is closer to C ∗H than (|A| ∗ C)H .

The state of the art techniques in MCTS [67] include SS [25], UCT [65], its variants

and FSSS [66]. They provide different ways of performing action selection in MCTS.

The respective exploration strategies depend on good Q-value estimates which are often

time-consuming and hard to obtain. The results also depend heavily on the choice of pa-

rameters used for learning (number of sampled trajectories and branching depth). We seek

to circumvent this problem by directly incorporating domain knowledge in the form of ac-

tion abstractions to bias action selection. Recently MCTS has been combined with deep

learning methods [68] to facilitate function approximation in large game domains [69, 50].

While these methods are able to leverage the generalization capabilities of deep networks to
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generate state-of-the-art performance, they require large amounts of training data to learn

the parameters of deep neural network models. We argue for the incorporation of domain

knowledge to help exploration in MCTS without significant computational costs. We note

that there has been prior work on using MCTS with expert knowledge [70]. This approach

focuses on using human knowledge of the boardgame Go to define a comprehensive set of

rules that help in directing exploration of the tree. While the idea behind this approach is

similar to ours, their implementation encodes expert knowledge as part of the computations

that measure value confidence bounds and requires careful tuning of several coefficients

which sometimes result in conflicting learning objectives.

2.7 Interactive Machine Learning

There is a wide variety of work in the field of Interactive Machine Learning, namely Learn-

ing by Demonstration [71], Imitation Learning [72], Policy Shaping [73] and TAMER [74].

These approaches aim to learn the optimal policy from human critique or demonstrations.

A key feature of Reinforcement Learning is the use of a reward signal. The reward signal

can be modified to suit the addition of a new information source (this is known as reward

shaping [75]). This is the most common way human feedback has been applied to RL [76,

77, 78, 79, 80]. However, several difficulties arise when integrating human feedback sig-

nals that may be infrequent, or occasionally inconsistent with the optimal policy–violating

the necessary and sufficient condition that a shaping function be potential-based [75]. An-

other difficulty is the ambiguity of translating a statement like “yes, that’s right” or “no,

that’s wrong” into a reward. Manual processing of the data can yield ad hoc approxima-

tions for specific domains. Researchers have also extended reward shaping to account for

idiosyncrasies in human input. For example, adding a drift parameter to account for the

human tendency to give less feedback over time [76, 81].

Advancements in recent work sidestep some of these issues by showing human feed-

back can instead be used as policy feedback. For example, Thomaz and Breazeal [82]
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added an UNDO function to the negative feedback signal, which forced an agent to back-

track to the previous state after its value update. Work by Knox and Stone [74, 83] has

shown that a general improvement to learning from human feedback is possible if it is used

to directly modify the action selection mechanism of the Reinforcement Learning algo-

rithm. Although both approaches use human feedback to modify an agent’s exploration

policy, they still treat human feedback as either a reward or an estimate of the extended

utility of taking an action. In our work, we assume human feedback is not an evaluative

reward, but is a label on the optimality of actions. Thus the human’s feedback is making a

direct statement about the policy itself, rather than influencing the policy through a reward.

Our work similarly focuses on people’s knowledge of the policy where we want to allow

people to simply critique the agent’s behavior (“that was right/wrong”). Related work in

the area of transfer learning [84, 85], where an agent learns with “advice” on how it should

behave. This advice is provided as first order logic rules and is also provided offline, rather

than interactively during learning. Our approach only requires very high-level feedback

(right/wrong) and is provided interactively.

Active Reward Learning [86] have been used to learn a reward function from human

feedback and use that in an RL algorithm. They use the human to provide input on task

executions - a score to the execution - that they then smooth using Gaussian Processes and

Bayesian Optimization. Reward function design in general is known to be a hard problem

as there are always possibilities of loops in the learned policy. It is not clear how the

Active Reward Learning approach overcomes this problem. A paper similar in theme to

the work presented is one on active imitation learning by state queries [87]. The authors

present an approach where the human interacts with the agent by giving a optimal action in

a specific state or by saying that the state is bad. The query-states are chosen by a query-by-

committee approach based on Bayesian Active Learning. In their approach, they assume

the learner has access to a simulator of the MDP and also do not explicitly handle the case

where humans provide a bad state response - they simply memorize those states.
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In other works, rather than have the human input be a reward shaping input, the human

provides demonstrations of the optimal policy. Several papers have shown how the policy

information in human demonstrations can be used for inverse optimal control [88, 89], for

teaching [90], to seed an agent’s exploration [91, 92], and in some cases be used DAgger

[93] is a no-regret online learning approach used for supervised learning. The method

learns from training data and then executes the learned model. For every mistake made, the

human demonstrator provides more examples in that space. These examples are appended

to the training set and the learner is retrained. While it is not strictly an RL approach, it

is mainly providing examples useful for a supervised learner. We note here that in many

cases, methods in the literature make assumptions on optimality of human information used

to assist machine learning.

Preference based reinforcement learning [94] relies on the idea of using preferences

from domain experts to design the goals of a problem and solve the problem by satisfying

as many of the preferences as possible. Researchers have shown that using this formulation

helps overcome reward shaping problems by allowing algorithms to use non-numeric re-

wards as well as reducing the dependence on an machine learning expert to carefully design

the reward function. However there are several open questions with this approach regarding

exploration in large domains, satisfying multiple objectives and scalability to large domains

with deep networks. This remains an active area of research.
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CHAPTER 3

AGENT-GUIDED EXPLORATION FROM DEMONSTRATION

In this chapter, we demonstrate how to explore the search space of a problem using human

help. We design an exploration policy using human demonstrations and use the learned

policy to guide the RL agent. An issue that often comes up in such approaches is that the

policies learned in this manner can be ineffective for the agent as the demonstrations are

not necessarily helping the agent’s model. To address this concern, we draw inspiration

from concepts of active learning and design a agent-guided approach to obtaining demon-

strations. We use statistical properties of least squares methods to query the agent’s learned

model and communicate its uncertainty to the human. The human can now provide data to

the agent in parts of the search space that are useful from the agent’s perspective.

Expected Contributions - We present a sample efficient method towards human-guided

exploration for an RL agent. We show how our method can be used to efficiently solve

problems with high-dimensional state variables, long horizons and sparse reward functions.

3.1 Approach

In this section we describe an interactive approach to exploration in reinforcement learning

using statistical properties relevant to the underlying learning algorithm. We outline prop-

erties of exploration policies, statistical measures useful for this purpose and how these

measures can be used to solicit interaction that drives the agent’s exploration.

3.1.1 Exploration Policies

For sequential decision-making problems, exploration policies are used to guide the agent

to different parts of the search space so as to obtain good estimates of the value function

while covering as much of the state-action space as possible. There are a number of factors
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affecting this exploration such as the dynamics of the domain, the sparsity of rewards, the

size of the state-action space and the problem horizon (steps to goal). In addition to these

properties, a subtle but important aspect of exploration that is implicit in existing methods

is that exploration policies are not strictly stationary. As the agent gathers more information

about the world, the exploration policy changes to accommodate the learned model.

Traditional methods, as explained earlier, explore using a variety of methods ranging

from a uniformly random policy to value-based heuristics. These methods are prone to

redundant exploration and (in some cases) expensive sample requirements. The idea of

inefficient exploration also applies to methods involving human interaction, as human data

is often limited to specific regions of the search space while relying on the learning algo-

rithm to generalize effectively. To account for the characteristics of exploration policies

while overcoming the limitations of existing methods, we present a policy-based approach

to exploration. We solicit demonstrations based on the agent’s uncertainty about its model

to guide the agent to cover the search space more efficiently. For a given MDP, model

uncertainty arises from a combination of stochastic elements in the domain (transition and

reward function) and insufficiently explored states and actions. Keeping this in mind, we

investigate properties of relevant RL algorithms and select measures that serve to charac-

terize the model uncertainty with the goal of designing effective exploration policies.

In our work we use Q-learning with linear function approximation which uses gradient

methods to perform optimization. The loss function used is akin to minimizing the squared

loss of the Bellman error [95]. Using this information, we use statistical properties of

analogous methods that have been well-studied, like linear regression or least squares, to

understand the impact of each data point or observation on the learning agent’s model.

3.1.2 Statistical Measures

In order to understand the agent’s model uncertainty, we review statistical analysis of linear

regression methods [23] to find measures useful for our purposes. In linear regression prob-
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lems, input observations can be scored by their influence to measure the effect they have

on the learned model. A high influence score points towards observations that merit further

investigation. Influence is computed as a combination of two measures: Leverage and Dis-

crepancy. Leverage is a measure of how far a specific observation is from the convex hull

of known observations. It helps recognize outliers and can also be considered a measure

of novelty. Discrepancy is related to how much an observation contributes towards model

error. It is computed for each data point and captures the goodness of fit for the model be-

ing trained by introspecting the model error if that datapoint were to be removed from the

dataset. From the perspective of exploration in RL, these measures help to identify novel

parts of the state-action space (using Leverage) and how much the observations already

experienced contribute to model error (using Discrepancy). A key insight into using these

type of measures for RL is that the data the agent trains on does not contain any outliers as

every observation made by the agent, by interacting with the domain, is relevant to solving

the MDP. This indicates that there is essentially no data to be discarded. We hypothesize

that an RL agent that actively explores the observations that have high leverage and high

discrepancy, i.e. overall high influence, will lead to more efficient exploration to solve the

MDP.

In order to utilize these statistical measures we explicitly set up the problem as a linear

set of equations that correspond to the standard form, Xβ = y. An RL agent is solving

the MDP to optimize the function, Q(s, a) = R(s, a) + γmax
a′

Q(s′, a′) where Q(s, a) =

φ(s, a)T θ. It is straightforward to see that the left-hand side of the optimization function,

Q(s, a) or φ(s, a)T θ takes the place of Xβ and the right-hand side forms y. The input

data for our approach comes from transitions of the RL agent as it is attempting to solve

the problem. The state-action features, φ(s, a) observed by the agent during transitions are

used to populate the rows of the data matrix, X (n × k for n observations and k features).

Given this formulation we define the statistical measures useful for exploration.
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Leverage

Leverage is a measure useful to determine how well the state-action space has been covered

as it detects outliers in the data. Given independent variables, X , we compute leverage, h

using the hat matrix, H as follows [23]:

H = X(XTX)−1XT (3.1)

The hat matrix maps the vector of dependent variables (y) to the vector of fitted values,

ŷ = Hy. The diagonal elements of the hat matrix, hii are the leverages, which describe the

influence each dependent variable value has on the fitted value for observation i. Leverage

values are in the range [0, 1]. A high value indicates that the observation is an outlier and

vice versa. A fixed threshold parameter is used to detect the presence of outliers. We

use 0.5 as the cut-off to indicate if an observation is an outlier. For RL problems, a high

leverage indicates that the respective state-action pair is an outlier, i.e. is novel and has not

been visited often.

Typically RL algorithms require large amounts of data to solve the MDP which makes

it infeasible to store all the transitions in a batch. In addition to that, computing leverage

can pose computational issues as it requires taking the inverse of a matrix of size k×k (for

k features) which can be very large for high-dimensional problems. To address the mem-

ory and computational concerns, we use the Sherman-Morrison formula to incrementally

compute the inverse of XTX . The formula is stated as follows:

(A+ xTx)−1 = A−1 − A−1xTxA−1

1 + xA−1xT
(3.2)

where A−1 is initially set to 1
δ
I (identity matrix of size k × k) and δ is a small positive

number, say 1e−4. Using this computation, the leverage of an instance x of data matrix X

can be computed as xA−1xT .
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Discrepancy

This measure captures the observations that the learning algorithm is unable to model thus

leading to large errors. Discrepancy is computed using the externally studentized residual

[23]. These residuals are obtained by computing the residual for an observation and divid-

ing it by the standard error (or standard deviation). This is done to reduce the effect of the

variance in the errors and allow residuals to be compared. An externally studentized resid-

ual is one that computes the residual by taking into account the difference in the learned

model with and without the observation in question. For observation i, the discrepancy, ti

can computed as:

ti =
ei√

MSE(i)(1− hii)

MSE(i) =
(n− p)MSE − e2i

(1−hii)

n− p− 1

(3.3)

HereMSE represents the mean-squared error, n is the number of samples, p the number of

independent variables, hii is the leverage for observation i and ei is the TD error for sample

i. MSE(i) is the mean squared error for the model based on all observations excluding

sample i. We note that MSE is typically computed using batch data which is computa-

tionally infeasible to store in large scale RL domains. It does not lend itself to incremental

computations due to the max operator in the RL optimization function (when computing

MSE and ei). We circumvent this problem by storing a batch data matrix, update it with

new observations using a (FIFO) sliding window and compute the required parameters [96]

online. In the analysis of linear systems, when the absolute value of the externally studen-

tized residual, |ti| is greater than 2, the corresponding observation is considered an outlier

that needs further investigation. Henceforth we use the term discrepancy to represent the

externally studentized residual.

Note that the observations that are marked as high leverage and/or high discrepancy

continue to be visited until the stateful hat matrix A and/or the trained model no longer

recognize these observations as influential.
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Using these measures the RL agent can identify observations in the MDP that require

further exploration. We now describe how we use them to solicit demonstrations for explo-

ration.

3.1.3 Demonstration Query

For every transition made by the RL agent, it computes the leverage and discrepancy and

compares it to the respective thresholds. If either threshold is exceeded, we identify the

corresponding observation as influential. To learn more about that observation and reduce

its influence, we learn a policy using guidance from a person or a simulated oracle that

drives the agent towards these observations. The goal of the human/oracle is to prescribe the

shortest path for the flagged observation. We consider an automatic approach of computing

the path in the next chapter.

Consider the state associated with an influential observation the agent transitioned into

as s+. To encourage exploration to s+, it is important to bridge the gap between regions

of low influence to those of high influence. Intuitively this can be explained by the idea

that state-action pairs that have low influence are likely to have been frequently visited

and sufficiently explored. Therefore designing a policy from parts of the state-action space

that the agent knows well and visits often to those with high influence is most likely to

encourage exploration to and around s+. As explained before, leverage provides a way to

identify data points that have been visited often. To acquire the necessary low influence data

point that is to be connected to s+, we review every observation i, in the current episode

and compute the corresponding leverage: hi = φ(si, ai)A
−1φ(si, ai)

T . We then compute

the mean leverage, µh from these observations and find the state, si that corresponds to the

data point with the closest leverage,

argmin
i
|hi − µh| (3.4)
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Once the low and high influence observations have been identified, we collect exploratory

demonstrations either from a person or a simulated oracle using a Graphical User Interface

(GUI) for the domain. When the algorithm queries for demonstrations, the GUI highlights

the states that need to be connected by demonstrations. Using the GUI, the user can a)

provide demonstration(s), b) choose to ignore the query and c) stop interacting with the al-

gorithm altogether. The simulated oracle provides demonstrations by following the shortest

distance path between the queried states. There are no inherent assumptions made about

quality or quantity of demonstrations. The only requirement is for the user to be knowl-

edgeable about the MDP dynamics to help the agent navigate in the domain. For every

demonstration provided, we learn an oracle exploration policy πO using standard super-

vised learning algorithms and sample an action from this policy when the agent decides to

explore.

We note here that when soliciting demonstrations, the final state in the demonstration

may be different from the query state requested by the agent. This is likely to be ob-

served in domains with stochastic elements and/or non-playable characters. While there

is no straightforward way to ensure a certain state is visited in an MDP, our experimen-

tal results show that the policy learned using our approach is effective at driving the agent

towards influential parts of the MDP as it continues to actively request user demonstrations.

3.1.4 Action Selection

The oracle exploration policy, πO defines a policy that when followed is likely to guide the

agent from regions of low influence to those of high influence. However using such a policy

alone to explore in and of itself can be insufficient for the purposes of RL where the goal

is to arrive at the optimal policy as soon as possible. Additionally the nature of exploration

is non-stationary and as such if there are limited demonstrations, the agent is less likely to

explore the set of influential regions in the MDP. To account for these properties, we design
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our exploration policy as follows:

πE ∝ (πO + πL) · πB (3.5)

where πO is the oracle exploration policy, πL is the leverage value ∀a ∈ A for state s and

πB represents the Boltzmann exploration policy. We note that the leverage values lie in the

range [0, 1] and for our purposes can be used as probabilities. A leverage value closer to 1

will have the effect of sampling the corresponding action more often. Intuitively πE repre-

sents the exploration policy that chooses between the oracle demonstration or the leverage

values, weighted by the softmax Q-values of the actions in the state. This exploration

policy allows the agent to reach regions of high influence using human demonstrations or

select actions with high leverage while actively seeking the goal. We use πE in an ε-greedy

fashion to facilitate exploration in our approach.

3.1.5 Exploration from Demonstration

We now outline our approach with all the pieces defined using Algorithm Block 2. The

objective of Exploration from Demonstration (EfD) is to learn the optimal policy using

RL while ensuring the agent actively explores regions of the state-action space that have a

potentially large influence on the learned model.

EfD as described in Algorithm Block 2 has a tendency to query the user demonstrations

repeatedly as high influence regions are often in close proximity to others. This results in

the leverage and discrepancy thresholds being crossed very often within the same episode.

In order to make EfD more user-friendly we include a predefined fixed time period, Ts

where the agent executes self-play without any user queries. During self-play Q-learning

and leverage parameters (θ &A−1) continue to be updated. We note that EfD does not mod-

ify any theoretical guarantees of the methods used as Q-learning is an off-policy algorithm.

This completes the description of our approach.
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Algorithm 2 Exploration from Demonstration (EfD)
repeat(for each episode):

Initialize s
repeat(for each step of episode):

Compute πE (Eqn. 3.5)
Choose a (ε-greedy action selection using πE)
Take action a, observe r, s′

Store transitions 〈s, a, r, s′〉
Update θ and A−1 (Eqn. 2.2 & 4.4)
Compute leverage and discrepancy (Eqn. 3.1 & 4.5)
if high influence at s then

s+ ← s
Compute starting state, si (Eqn. 3.4)
Query demonstrations from si to s+

Update θ and A−1

Self-play for Ts (includes parameter updates)
end if
s← s′

until s is terminal
Decay ε

until end of learning

3.2 Experimental Setup

To validate the performance of EfD we conduct experiments on a gridworld and popular

arcade game domain and compare our method to several baselines. In this section we

describe the domains used in our experiments and the relevant baselines.

3.2.1 Domains

We use two domains to empirically highlight the performance and properties of EfD. We

represent these domains as MDPs in the following manner:

Gridworld. This domain is designed by adapting the specifications outlined in [32]. In ad-

dition to the introduction provided in Chapter 1 5.4, we describe the specific experimental

setup here. We implement an 18×18 discrete grid (Figure 3.1a) with four deterministic ac-

tions that move the agent up, down, left and right. The goal is to reach the top right corner
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Figure 3.1: A snapshot of the two domains used in our experiments. The first is a Gridworld
with regions of interest and the second is the Frogger domain of size 1x.

of the grid. For every step taken, the agent accrues a step cost of−1 and a reward of 0 at the

goal state. The blue shaded regions represent slippery squares. If the agent transitions out

of a slippery square (both into an unshaded square or another slippery square), the reward

is uniformly distributed in the interval [−12,+10]. The gray shaded regions represent iso-

lated squares. Any transition that leads the agent into this region from an empty square has

a 0.1 probability of success. Once inside, movements within the isolated region as well as

those leading out are not restricted. Transitions leading into the bounding walls keeps the

agent’s state unchanged. An episode starts with the agent randomly placed in the grid and

stops when the agent reaches the goal. We used identity features to represent the state space.

Frogger. We utilize the game of Frogger (Section 5.4 in our experiments. The state space

of the domain consists of the agent’s position along with the position and direction of travel

of cars in the grid and represented using binary features. The domain can be made more

complex, i.e. have a longer solution horizon, by increasing the number of intermediate

rows between the start and goal positions. We use this property to show how our method
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scales with the size of the domain. We refer to the domain configuration in Figure 3.1b as

Frogger1x and use Frogger2x to indicate doubling the number of rows used in Frogger1x

and Frogger4x to indicate a quadruple version of the same.

3.2.2 Baselines

We implement five baselines in our experiments and compare their performance to EfD.

Uniform random exploration and softmax exploration comprise two of the baselines. The

remaining three are defined as follows:

Learning from Demonstration + RL. In this method we acquire demonstrations of opti-

mal behavior from people or a simulated oracle. These demonstrations are used to learn

a policy using supervised learning methods (in this case logistic regression). We use this

policy as the seed policy to initiate RL. We execute the algorithm on the domain and report

the results.

Exploration by TD error. This approach draws from insights highlighted in this work

[32] and learns an exploration policy based on TD error. In our implementation we use the

current estimate of TD error (the absolute value) as the reward for a given state-action pair

and learn a Q-function using this information. A policy is extracted from the Q-function

using softmax action selection. The Q-function learned in this process plays the role of

driving the agent towards parts of the state-action space that have high TD error in order to

gather more information in those regions. We note that this approach is not strictly consis-

tent with standard MDP assumptions as the reward function is non-stationary (TD error is

constantly changing). While we counteract this effect to a certain degree by using a small

learning rate and a decaying exploration parameter, our experiments show that performance

was not greatly affected by this characteristic.
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(b) Discrepancy heat map

Figure 3.2: Leverage and discrepancy heat maps generated from random exploration of the
gridworld domain.

Exploration by Leverage. We derive an exploration policy by computing the leverage on

data consisting of visited state-action pairs. For any given state, we compute the leverage

for all actions, normalize the results and use it as a distribution from which we sample ex-

ploratory actions. As explained earlier leverage captures outliers in the data, which in this

case would represent actions, for a given state, that have not been tried often. This way by

sampling from normalized leverage values for all actions in a state, the agent is more likely

to sample new actions. This baseline is useful to signify the importance of exploratory

demonstrations.

3.3 Experiments and Results

We implement EfD for the chosen domains and highlight the results achieved along with

several tests that provide insight into EfD’s performance under different experimental con-

ditions.
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3.3.1 Using Leverage and Discrepancy for Exploration

In this experiment we use the gridworld (Figure 3.1a) to show the utility of leverage and

discrepancy as useful measures to guide exploration. The gridworld is suitable for this

purpose due to several design choices made. Firstly the isolated (gray) regions in the grid

represent parts of the state-space that are hard to reach and thus unlikely to be explored by

the agent. Secondly the non-deterministic reward function (represented by slippery blue

patches on the grid) pose some difficulty to the learning algorithm in accurately model-

ing the underlying value-function. We conduct two experiments to show the individual

contribution of the chosen exploration measures.

To highlight the utility of leverage, we perform a random walk in the gridworld for 50

episodes. In each episode, the agent starts in a random position and moves randomly until

the goal is reached. For every step taken, features of visited state-action pairs are used to

form the data matrix X . Using X , we compute the hat matrix H (see Equation 3.1) and

use that to derive the leverage h(s, a) for every state-action pair.

In Figure 3.2a, we plot a heat map using max
a

h(s, a) ∀s ∈ S. The heat map shows the

correspondence between the regions of high leverage (h ≥ 0.5) and hard to explore regions

of the gridworld (isolated gray regions). Leverage, as explained earlier, is used to identify

outliers in the data. In this case the heat map presents the gray region as outliers which

necessitates the need for further exploration. Analogously this effect can be seen in other

more complex high-dimensional domains where it is hard to entirely cover the state-action

space. Leverage, as shown here, captures regions that the learning agent is unable to reach

often.

While leverage captures how often state-action pairs have been visited, it does not

capture details about the transition function, reward function and RL algorithm’s learned

model. Here we show how discrepancy is useful for this task. We perform Q-learning with

linear function approximation on the gridworld domain for 50 episodes. We set γ = 0.99,

α = 0.1 and ε = 1.0. We store all the transitions 〈s, a, r, s′〉 from the sampled episodes
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and compute the mean squared error using the learned weight vector θ (refer Equation 4.5).

The mean squared error is used to derive the discrepancy t(s, a) for every state-action pair.

In Figure 3.2b, we plot a heat map using max
a
|t(s, a)| ∀s ∈ S. The heat map shows

the correspondence between the regions of high discrepancy (|t| > 2) and the slippery

regions in the gridworld. Intuitively this is to be expected as the TD error in these areas

is likely to have large magnitude and high variance and that warrants further investigation.

We note that the bright red patch in the top right corner of the heat map signifies the high

residual obtained at the goal and its adjoining states. Using this heat map as a threshold

for exploration would draw the agent towards the slippery patches and the goal until the

learning algorithm captures the underlying model and the residual decreases.

The experiment serves to highlight the roles played by leverage and discrepancy and

how they guide the agent’s exploration. Leverage guides the agent towards state-action

pairs that have not been visited often during learning and the discrepancy guides the agent

towards regions of the domain which the learning algorithm has difficulty modeling the

value-function.

3.3.2 EfD for Frogger

In this experiment we instantiate the EfD algorithm in the Frogger domain for different

sizes of the problem, Frogger 1x (10 rows), Frogger 2x (18 rows) and Frogger 4x (34 rows).

We perform Q-learning with linear function approximation with γ = 0.99, α = 0.0006

and εstart = 0.8. We use the following decay schedule for the exploration parameter:

ε = εstart×N0

(N0+Ep#)
where N0 is the decay rate and Ep# is the current episode number. We

set N0 as 1500, 2500 and 5000 respectively for the three versions of Frogger. The thresh-

old parameters for EfD were fixed with the leverage threshold set at 0.5 and discrepancy

threshold at 2. The self-play time period for EfD was set to Ts = 500, Ts = 2000 and

Ts = 5000 steps respectively for the three versions of Frogger. The temperature for soft-

max Boltzmann exploration was set to 50. We acquired demonstrations from two users
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Figure 3.3: Performance of EfD and baselines on the Frogger game domain of varying
sizes (1x, 2x and 4x) averaged over 10 trials. The numbers in parenthesis are the average
number of input user demonstrations.

who were both familiar with the dynamics of the game. We received anywhere from 5 to

30 demonstrations depending on the size of the domain that was being tested. Demonstra-

tion time in total was no more than 10 to 15 mins. The human policy was learned using

logistic regression with a learning rate of 0.01. We plot the results of this experiment along

with comparative baselines in Figure 3.3. We see that EfD converges to the optimal policy

faster than the baselines using a small number of demonstrations. To ease readability we

plot only a subset of the baseline methods in Figure 3.3 as the performance of the baselines

(TD-error, Leverage and Softmax) were consistent across the three sizes. The performance

is further improved over the baselines as the size of the domain is increased. This is ex-

plained by highlighting how EfD queries and utilizes user demonstrations. In the initial

stages of learning, the user is queried with demonstrations leading to states in the rows

closer to the bottom row. As the agent gains experience, demonstrations are requested for

states further up. In this process, the agent incrementally explores the rows until it finally

reaches the goal in the top row. Such an incremental learning approach makes it easier for

agent to reach the goal as well as easier for the user to provide demonstrations. This also

explains why LfD (+ RL) does not perform as well as EfD for larger grids. The size of
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(a) Agent queries the user for demonstra-
tions to the highlighted position based on the
leverage threshold.

(b) Agent queries the user for demonstrations
to the highlighted position based on the dis-
crepancy threshold.

Figure 3.4: Examples of the types of states queried by the agent during EfD when applied
to Frogger2x (18 rows).

the domain limits the search space covered by the human demonstrations as well as pro-

hibits optimal demonstrations from start to the goal. EfD performs better by using the RL

algorithm’s inductive bias as well as the underlying representation to acquire incremental

demonstrations that are most useful to the agent. These results were consistent across both

users. The TD-error and leverage baseline methods while more informed do not perform as

well due to their redundant exploration. An interesting observation of EfD from our exper-

iments is that, by using thresholds for the statistical measures, with sufficient experience

the agent automatically ceases to request demonstrations. In which case, we observe that

the agent has enough information to model the Q-function and solve the MDP.

3.3.3 Types of States Queried

Here we take a closer look at the types of states queried by the agent during EfD. We present

results from the Frogger2x domain which consists of 18 rows from start to goal. Figure 3.4a

is an example of an agent query, based on the leverage measure, where a demonstration is
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required between the frog near row 8 to the highlighted grid position near row 4. An

observation that exceeds the leverage threshold indicates that the agent has not visited that

state-action pair often and therefore requires input demonstrations. Such a query points

towards how EfD gathers information about the state-action - decomposing the domain in

smaller regions. Demonstrations are requested from known regions to unknown regions

and often they are in close proximity to each other. Providing a demonstration for such

a query would be easier than providing optimal demonstrations from start to end in this

domain. Figure 3.4b is an example of an agent query based on the discrepancy threshold.

We note that the highlighted position is around a car near row 6 which is a terminal state

with reward −100. The discrepancy here exceeded the threshold as the agent’s current

model was unable to make an accurate prediction of the Q-value of an action in this state

and thus requested a demonstration.

We would also like to highlight a few uncommon queries that provide interesting in-

sights into the method. In some cases the agent requests demonstrations from a state where

the frog is closer to the goal to states where the frog is further away. From the perspective

of solving the MDP, using such a policy would encode suboptimal information, however

for policy-based exploration, it only serves to get a better estimate of the Q-function. Note

that exploration is carried out by combining the human policy with softmax policy (Sec-

tion 3.1.4) which therefore ensures the agent select actions that are more likely to lead it

towards the goal. For some queries we observe that the agent’s position on the grid re-

mains the same for both start and final states, while the position of cars is different. With

respect to EfD, these are different states and therefore it is a valid demonstration query.

This shows how EfD makes demonstration queries by taking into account the underlying

representation.
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3.3.4 Effect of Input Demonstrations and Threshold Parameters

In this experiment, we test the sensitivity of EfD to the quality of demonstrations used

to learn the exploration policy. While we do not place any assumptions on the quality of

demonstrations, we analyze the degrees to which performance is affected as the quality of

demonstration is varied. We use the simulated oracle for this experiment under different

demonstration noise conditions: Oracle0.1, Oracle0.3, Oracle0.5. An oracle with noise

0.1 (Oracle0.1) will provide the required demonstration 90% of the time and 10% of the

time, take random actions. The results of this experiment are summarized in Table 3.1. As

Frogger1x (5) Frogger2x (12) Frogger4x (23)
Oracle0.0 2560 ± 150 3194 ± 230 4430 ± 410
Oracle0.1 2752 ± 321 3470 ± 527 4893 ± 564
Oracle0.3 2648 ± 469 3304 ± 699 5218 ± 866
Oracle0.5 5102 ± 932 6329 ± 875 7688 ± 1043
ε-greedy 6570 ± 120 8555 ± 212 10000 ± 405

Table 3.1: EfD performance as a function of the quality of input demonstrations from
a simulated oracle in the Frogger domain. The values represent the number of episodes
taken by each method to converge to the optimal policy. The numbers in parenthesis are
the number of input demonstrations the simulated oracles are limited to. We include results
from the ε-greedy baseline for comparison. The results are averaged over 10 trials.

evidenced by the table, the performance of EfD varies based on the quality of input demon-

strations. Relative to Oracle0.0 (optimal oracle demonstrations), Oracle0.1 and Oracle0.3

achieve similar performance. This is explained by the fact that for most query demon-

strations there exist multiple ways to reach the desired state and neither path is any more

optimal than the other from the perspective of exploration. By introducing noise in the

oracle demonstrations, they can potentially explore more states than Oracle0.0 which can

include both low and high influence observations. However this has the effect of increased

variance in performance for noisy simulated oracles. Oracle0.5 (with 50% random action

selection) has large variance in its performance but still outperforms ε-greedy uniform ran-

dom exploration.

In our experiments, we set the leverage threshold at 0.5 and the discrepancy threshold
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at 2. Changes to these parameters directly affect the number of demonstrations queried by

the agent which affects the amount of exploration carried out by the agent. Higher values

results in fewer demonstration queries and as a result most of the exploration is carried out

by the agent autonomously. On the other hand lower thresholds result in frequent queries

which has the effect of learning an exploration policy close to a uniform policy. In general,

from tests in our domain, we find that setting leverage threshold to 0.5 and discrepancy

threshold anywhere in the range [2, 6] provides the best results.

3.4 Summary and Discussion

Here we highlight the benefits of specifically learning an exploration policy for RL in the

context of EfD. When faced with large domains with sparse rewards and long horizons, a

policy-based approach is less vulnerable to the large sample requirements of value-based

methods as the information acquired from a single demonstration allows the agent to ex-

tends its range of exploration over multiple timesteps. Additionally such a method does

not concern itself solely with reward information. The statistical measures used in EfD

(leverage and discrepancy) focus on different aspects of the MDP which allow the algo-

rithm to function well across a wider class of problems. This is in contrast to value-based

methods which rely on large samples of reward information to estimate the uncertainty in

the value function often made complicated in sparse reward and long horizon domains.

Also EfD does not require optimal demonstrations to learn but instead demonstrations that

serve to connect two regions of the agent’s choice. As these demonstrations are used for

exploration, they can be potentially noisy (which may in some cases help the agent).

In this chapter we presented a model-free policy-based approach called Exploration

from Demonstration (EfD) that performs interactive exploration for RL algorithms. Our

method adapts statistical measures of linear regression to capture aspects of an MDP that

are important to explore and model in order to learn the optimal Q-function. We high-

light the properties of these measures in an instructional gridworld MDP and empirically
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test our approach on a popular arcade game under different experimental conditions. We

show how EfD scales to larger problems and outperforms baselines using only exploratory

demonstrations while placing very few requirements on the quality and quantity of input

data. Our method is particularly suited to problems which have a long horizon and sparse

rewards as well as those domains where optimal demonstrations are hard to acquire. In

the future we would like to extend EfD to learn a model of the MDP, thus allowing the

algorithm to request examples from arbitrary states rather that waiting to transition to those

areas. Another interesting avenue for future work is the idea of extending EfD to work with

more data efficient RL algorithms like Least Squares Policy Iteration [97].
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CHAPTER 4

AUTONOMOUS AGENT-GUIDED EXPLORATION

In the previous chapter we show how human demonstrations can be used to guide explo-

ration. The demonstrations serve to help connect regions of the state-action space based on

statistical properties of the underlying learning algorithm (linear regression in this case).

As such the demonstrations drive the agent from well-modeled areas of the MDP to ex-

plore other areas of interest that are influential. We show the EfD approach is successful at

solving domains with sparse rewards, long horizons and does not require optimal demon-

strations from people.

While EfD has several desirable properties, we make several algorithmic assumptions

that limit its applicability across a general class of MDPs. We primarily assume that the

availability of external input in the form of sample demonstrations. When available, this

can be very helpful for learning however it places a strong requirement on applicability of

the algorithm for different problems. Additionally it requires the human interacting be fa-

miliar with the dynamics of the domain and be able to interpret the visual representation to

provide demonstrations. The algorithm is also not ideally suited to handle highly stochastic

domains and domains with a large number of actions due to additional computational costs.

To overcome some of these obstacles, we design an autonomous policy-based approach

to explore using the same statistical measures described in the earlier chapter. We begin

by providing a high-level perspective of the approach, followed by a detailed description

of the algorithm, theoretical properties and experiments on a classical control problem and

game domains while comparing it to existing autonomous exploration strategies.
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4.1 Approach

To facilitate automatic exploration, it is important to guide the agent towards aspects of

the MDP useful to learn the optimal policy. We seek to learn an exploration policy that

captures information that the statistical measures help the agent in identifying. To achieve

this autonomously, we use the computed measures as a source of reward in an auxiliary

MDP that when solved provides a policy that facilitates exploration.

In this section we describe the design of the exploration MDP, associated reward func-

tions and how the policies learned can be used for exploration in RL algorithms.

4.1.1 Autonomous Exploration

In the previous chapter we highlighted the choice of statistical measures and how they

were used as criteria to solicit human demonstrations. The demonstrations guide the agent

towards parts of the MDP that are a) hard to reach (leverage) and b) hard to model (dis-

crepancy). To extend the work to a larger class of problems, it is desirable to learn these

policies autonomously without human assistance.

To that end we setup the problem of learning exploration policies as solving a auxiliary

MDP, M exp = 〈S,A, T , Rexp, γ〉. The tuple follows the original MDP M , with a modified

reward function Rexp. The reward function is defined based on the statistical criteria which

we use to learn an exploration policy by solving the MDP, M exp.

This setup is designed to motivate the agent to learn a policy that encourages it to

reach states with high values for leverage and discrepancy. As a consequence, more data

is gathered in these areas of interest which in turn helps lower the computed statistical

measures over time and helps the agent move on to other areas. Overall the agent would

be solving for both the optimal policy for the original MDP, M while also solving for an

exploration strategy towards areas of interest using M exp.

To solve the MDPs, we make use of off-policy RL algorithms like Q-learning. To
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facilitate online learning of the exploration policy, it requires a) careful reward function

design and b) online computation of the statistical measures. In the following sections, we

describe online computations of the criteria, the exploration reward functions and finally

show how we can use them to setup and solve the MDP.

4.1.2 Reward Functions for Exploration

To learn the exploration policy associated with leverage and discrepancy, we design an ar-

tificial reward function for each metric. We setup the rewards to be a function of the com-

puted leverage and discrepancy values. We bound the range of these metrics and rescale

them to be used as a reward function. Assuming the desired reward function falls in the

range [Rexp
min, R

exp
max], for the given metric, we can compute the reward function as

Rexp = Rexp
min +

Rexp
max −R

exp
min

Imax − Imin
(4.1)

Here [Imin, Imax] represent the range for the chosen metric of influence (leverage or

discrepancy). Leverage has a bounded range [0, 1]. Numbers closer to 1 indicate that

the datapoints are likely to be outliers and as such would want these datapoints to have

a higher reward to encourage the agent explore them. Discrepancy has a lower bound of

0 but no upper bound. From linear regression literature [23], values greater than 3 are

typically considered influential and worth exploring. To provide a broad range for the

reward function, we set the range for this to be [0, 9]. By scaling the influence metrics

to act as a reward function, we can design it without the need for thresholds (required in

the EfD work). The scaling has the effect of rewarding states and actions that have high

leverage or discrepancy.

We can now compute the reward function for leverage, Rexp
L and discrepancy, Rexp

D

using the above formulas and provided ranges. This provides with the necessary reward
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function for our exploration MDP, M exp:

Rexp = Rexp
L +Rexp

D (4.2)

We set up a reward function, one for each metric, and use them to create an exploration

MDP. Solving this MDP provides a policy that will guide the agent towards points of influ-

ence (taking into account both metrics). We note that this reward function is non-stationary

as the metrics calculated change over time. This aspect is crucial to exploration as exploring

the global search space can be non-stationary as the agent gains more experience. Solving

the MDP under these conditions is not guaranteed to converge, though we will show that

policies learned help the agent explore.

4.1.3 Computing Statistical Measures Online

To compute the reward function, it is necessary to be able to compute leverage and dis-

crepancy online with every transition. Typically these measures are computed over a batch

of data stored in memory. This approach is challenging when working with complex do-

mains due to potential memory constraints and inherent computational complexity. Here

we show how we can compute leverage and discrepancy incrementally to be used to define

the necessary reward components.

Leverage

Leverage, as explained in the previous chapter, is a measure useful to determine how well

the state-action space has been covered as it detects outliers in the data. For a given state-

action pair, the leverage is computed as,

hi = φ(si, ai)A
−1φ(si, ai)

T (4.3)

To facilitate autonomous learning, we would need to setup incremental computation of
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the inverse of matrix A. This can set up using the Sherman-Morrison formula:

(A+ xTx)−1 = A−1 − A−1xTxA−1

1 + xA−1xT
(4.4)

With every transition, we update the inverse of the matrix using this formulation. The

variable x here represents a sample from the transitions: state-action features.

Discrepancy

In the EfD work, we stored transitions and computed the discrepancy on a moving window

of data. This is memory intensive in complex domains which often require a large number

of samples to be able to solve for the model. To compute the required reward function,

we provide a formulation where the discrepancy can be computed online without storing

data as transitions in memory. Here is the formula to compute the externally studentized

residual or discrepancy:

ti =
ei√

MSE(1− hii)
(4.5)

While hii or the leverage is available from A matrix, computing the mean squared

error (MSE) in this case poses some constraints when working without a batch of data in

memory. To compute this metric online, we have deal with errors in the value function V ,

which makes the equation we are solving for,

φ(s)θV = r + γφ(s′)θV

(φ(s)− γφ(s′))θV = r

(4.6)

With basic matrix algebra by multiplying both sides by (φ(s)− γφ(s′))T we can com-
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pute a analytical solution to the value function.

(φ(s)− γφ(s′))T (φ(s)− γφ(s′))θV = (φ(s)− γφ(s′))T r

θV = [(φ(s)− γφ(s′))T (φ(s)− γφ(s′))]−1(φ(s)− γφ(s′))T r

(4.7)

Here solving for θV can be achieved by using a least squares temporal difference learn-

ing approach (LSTD) [98]. This is important also when computing the studentized residual.

We note the LSTD learning for the value function is an on-policy method. To learn this in-

crementally, as before, we use the Sherman Morrison formula to compute the require matrix

inverse. While this gives us the least squares weights, in order to compute the discrepancy

we need to compute the mean squared error over all the data points. We now provide a

mathematical approach to computing the MSE incrementally. The MSE we are computing:

∑
t

[rt − (φ(st)− γφ(s′t))θVt ]
2 (4.8)

We can expand the equation by taking the square and separating the individual compo-

nents of the resulting equation. This allows us to incrementally compute the sum over the

experienced transition samples as follows:

D = D + φ(s)φ(s)T + γ2φ(s′)φ(s′)T − 2γφ(s)φ(s′)T

F = F + 2r(γφ(s′)T − φ(s)T )

G = G+ r2

(4.9)

The above equations (with D =, F = 0 and G = 0 to begin with) allow us to compute

the MSE for least squares regression in a online manner. An important aspect that facili-

tates this is the on-policy aspect of the value function, ie. it does not concern itself with

the actions directly. Using these updates, we can compute the mean squared error in the
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following manner:

SSE =
∑

(diag(D(θV θ
T
V ))) + FθV +G

MSE =
SSE

(n− p− 1)

(4.10)

With every transition taken by the agent, we can compute the learned weights, compute

the MSE and the discrepancy online without the need to store data as transitions.

4.1.4 Learning the Exploration Policy

With the reward functions defined and an online approach to computing the required met-

rics, we can use them to solve for the exploration policies. Any choice of RL algorithm can

used here to solve the exploration MDP. We use Q-learning with function approximation

which performs regression using gradient descent. The update rules follow the standard

implementation [6].

Sampling Policy . With every sample we update the Q-function for exploration and are

in the process learningQexp(s, a) = θexpφ(s, a). We can select action with maximum value

as our choice, argmaxQexp(s, a). This selection can be used as part of an ε-greedy strategy

where the action for exploration can be selected from the policy implied by Qexp(s, a)

instead of uniform random selection. We note that the selection of the exploratory action

in this case is deterministic and not probabilistic.

4.1.5 Automatic Policy Exploration

We now outline the overall approach putting together the individual pieces described ear-

lier.

The automatic exploration strategy improves upon the work in the earlier chapter by

removing the thresholds for leverage and discrepancy. The main inputs to the algorithm as

the ε parameter and the associate decay schedule if any. We will show in the experiments

50



Algorithm 3 Automatic Policy Exploration
repeat(for each episode):

Initialize s
repeat(for each step of episode):

Select action a according to Qexp

Take action a, observe r, s′

Update θQ, MSE, A−1,
Compute leverage and discrepancy
Compute the reward function for leverage and discrepancy
Update θexp

s← s′

until s is terminal
until end of learning

that results are stable to the choice of the reward function ranges for the statistical metrics.

4.1.6 Properties

Here we provide some insight into the theoretical properties of this approach.

Convergence Any off-policy reinforcement learning algorithms are suitable with our ap-

proach and as such the convergence properties of these algorithms remain unaltered.

Parameter Optimization Our approach does not involve parameters introduced in the

EfD work, namely the removal of thresholds for the statistic measures, the need for mixing

time and we will show the reward parameters are domain agnostic. As the action selection

is deterministic, we remove the need for conversion of Q-values to action polices using

softmax action selection. This removes the need for the boltzmann parameter. It does

include the ε parameter to give the algorithm a stochastic chance to explore.

Start-state Distribution . This approach to exploration is agnostic to the state state dis-

tribution. It uses the statistical criteria to guide exploration and the start state distribution

only control how often and how fast state-actions pairs are visited.
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Complexity . The algorithm has a computational complexity O(n2) where n is dimen-

sions of feature space. This is due to the matrix operations to compute the least squares

solution as well as the incremental computation of the mean squared error. Additionally

as we not storing any samples, the memory complexity is in the worst case O(n2) as we

storing a matrix.

4.2 Experiments

In this section we instantiate the algorithm in different problems to evaluate its perfor-

mance. We utilize gridworlds, a classical control problem and game domains to test the

algorithm’s performance in continuous environments, stochastic conditions and domains

with long horizons and sparse rewards.

4.2.1 Baselines

Count-based Exploration [16]. In this approach, counts are maintained directly for the tab-

ular case and using hash maps for the continuous case to keep track of state visitations and

use them as intrinsic rewards to bias action selection for exploration.

Continuous Texplore [99]. This represents a model-based approach to learning to explore

for continuous domains. The approach builds multiple regression trees to learn to predict

the next state and uses directed planning to solve for the optimal policy.

We also compare our approach to traditional forms of exploration: softmax action selection,

optimism in the face of uncertainty and random exploration.

4.2.2 Instructional MDP - Gridworld

The gridworld used in this experiment is of size 3× 13. The agent has to navigate from the

state labeled ’S’ to the red square labeled ’G’. The agent has four directional actions with
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Figure 4.1: Instructional Gridworld domain with start state, goal state and blue regions of
interest

Figure 4.2: Learning results for the Gridworld domain averaged over 10 trials

deterministic transitions. The blue squares represent puddles in the grid which penalize the

agent. The reward at the goal state is 10, −5 for stepping into the blue square and a step

cost of 0. In this domain the agent has to learn to reach the red square by avoiding the

puddle squares.

We compare APE Q-learning with the baseline algorithms. The results shown in Figure

4.2 show improved performance over random exploration for the algorithms that attempt

to explore in a more meaningful manner. APE, Count-based and RMax approaches do

particularly well as they explore optimistically to find the path around the slippery region

to reach the goal on the other side. It is non-trivial for a uniform random approach to chance

upon the optimal path without sufficient number of samples.
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4.2.3 Classic Control - CartPole

In the cart pole domain 5.4, the goal is keep the pole balanced with discrete forces applied to

cart. To represent the state space for learning, we made use of Fourier basis functions [100]

of order 3. This resulted in a 256-dimensional state space of real numbers in the range [−1

1]. This domain is useful to test exploration algorithms in continuous state space domains

and to see how well they capture the underlying structure and value function.

We compare the approaches mentioned earlier with the APE algorithm and results are

shown in 4.3. We see that APE and the count-based method have slow starts as their criteria

encourages them to explore all parts of the search space to better understand their effects

on the model. Specifically the discrepancy measure leads the APE agent to explore falling

over repeatedly until it is able to model that outcome well.

Alternatively Texplore focuses its efforts in parts of the problem that are more relevant

to optimal policy and as such has a better start. The differences between the methods appear

closer towards convergence where APE converges to better solution earlier using a more

complete understanding of the underlying structure while Texplore is subject to the noise

captured in its model predictions. APE is able to achieve competitive performance without

the need for learning a model or keep track of visitations which in different domains can

lead to redundant and unsafe exploration.

4.2.4 Game Domain - Frogger

In this experiment, we recreate the experiments in work on EfD and show that we can

learn the optimal policy using APE without human help. The results are shown in Figure

4.4. They compare the performance of APE with other relevant baselines. We show how

APE achieves the optimal policy faster than the baselines but slower than EfD. This is

understandable as domain knowledge in the form of human demonstrations was useful to

learn the respective exploration policies.
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Figure 4.3: CartPole training results averaged over 10 trials

4.3 Discussion and Conclusion

In this work, we present automated approach to explore using the statistical measures de-

scribed in the previous work. The agent learns two exploration policies that guides it to-

wards novel states as well as states that are hard to model.

An immediate assumption the algorithm makes is the value function is linear in the

features used to represent the domain. While this is applicable in several domain, it is

not always trivial to instantiate such features for all domains. To extend this approach

to deep reinforcement learning algorithms, a trivial solution is to perform the required

computations using the weights of last layer of network, assuming they represent a fully

connected layer with linear activation (which is the case most often). In the future we are

exploring more principled ways of allowing APE to work with deep reinforcement learning

algorithms.

We would also like to add that APE does not directly tackle the exploration-exploitation

trade-off. The algorithm explores the MDP and as it has satisfied its criteria for exploration,

begins to exploit. In the strictest sense, it does not balance the trade-off though it does

automate the transition between the two based on the samples experienced by the agent.

55



Figure 4.4: Learning results from Frogger from using autonomous exploration strategies
with EfD learning from human assistance as a reference.

Additionally as a result of switching between exploration and exploitation, the algo-

rithm supports non-stationary environments as well which is where several algorithms have

difficulty solving. The natural switch allows APE to detect changes in the environment due

to reward function or transition function and the statistical measures are able to capture the

change and proceed the explore them.

We are interested in scaling APE to work with continuous actions. In the current for-

mulation, it is not clear how to compute leverage and residual in domains with continuous

state and actions.
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CHAPTER 5

HUMAN-GUIDED EXPLORATION USING POLICY SHAPING

A long term goal of Interactive Reinforcement Learning is to incorporate non-expert hu-

man feedback to solve complex tasks. Some state-of-the-art methods have approached this

problem by mapping human information to rewards and long term expected utilities of ac-

tions and iterating over them to compute better control policies. In this work we argue

for an alternate, more effective characterization of human feedback: Policy Shaping. We

introduce Advise, a Bayesian approach that attempts to maximize the information gained

from human feedback by utilizing it as direct policy labels. We compare Advise to state-

of-the-art approaches and show that it can outperform them and is robust to infrequent and

inconsistent human feedback.

5.1 Introduction

A long–term goal of machine learning is to create systems that can be interactively trained

or guided by non-expert end-users. This chapter focuses specifically on integrating human

feedback with Reinforcement Learning. One way to address this problem is to treat human

feedback as a shaping reward [76, 77, 78, 79, 80]. Yet, recent papers have observed that a

more effective use of human feedback is as direct information about policies [82, 74]. Most

techniques for learning from human feedback still, however, convert feedback signals into

a reward or an expected action utility. We introduce Policy Shaping, which formalizes the

meaning of human feedback as policy feedback, and demonstrates how to use it directly

as policy advice. We also introduce Advise, an algorithm for estimating a human’s Bayes

optimal feedback policy and a technique for combining this with the policy formed from

the agent’s direct experience in the environment (Bayesian Q-Learning).

We validate our approach using a series of experiments. These experiments use a sim-
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ulated human teacher and allow us to systematically test performance under a variety of

conditions of infrequent and inconsistent feedback. The results demonstrate two advan-

tages of Advise: 1) it is able to outperform state of the art techniques for integrating human

feedback with Reinforcement Learning; and 2) by formalizing human feedback, we avoid

ad hoc parameter settings and are robust to infrequent and inconsistent feedback.

5.2 Reinforcement Learning

We use an implementation of the Bayesian Q-learning (BQL) Reinforcement Learning

algorithm [28], which is based on Watkins’ Q-learning [101]. Q-learning is one way to

find an optimal policy from the environment reward signal. The policy for the whole state

space is iteratively refined by dynamically updating a table of Q-values. A specific Q-value,

Q[s, a], represents a point estimate of the long-term expected discounted reward for taking

action a in state s.

Rather than keep a point estimate of the long-term discounted reward for each state-

action pair, Bayesian Q-learning maintains parameters that specify a normal distribution

with unknown mean and precision for each Q-value. This representation has the advantage

that it approximates the agent’s uncertainty in the optimality of each action, which makes

the problem of optimizing the exploration/exploitation trade-off straightforward. Because

the Normal-Gamma (NG) distribution is the conjugate prior for the normal distribution, the

mean and the precision are estimated using a NG distribution with hyperparameters 〈µs,a0 ,

λs,a, αs,a, βs,a〉. These values are updated each time an agent performs an action a in state

s, accumulates reward r, and transitions to a new state s′. Details on how these parameters

are updated can be found in [28]. Because BQL is known to under-explore, βs,a is updated

as shown in [102] using an additional parameter θ.

The NG distribution for each Q-value can be used to estimate the probability that each

action a ∈ As in a state s is optimal, which defines a policy, πR, used for action selection.

The optimal action can be estimated by sampling each Q̂(s, a) and taking the argmax. A
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large number of samples can be used to approximate the probability an action is optimal by

simply counting the number of times an action has the highest Q-value [28].

5.3 Policy Shaping

In this section, we formulate human feedback as policy advice, and derive a Bayes optimal

algorithm for converting that feedback into a policy. We also describe how to combine the

feedback policy with the policy of an underlying Reinforcement Learning algorithm. We

call our approach Advise.

5.3.1 Model Parameters

We assume a scenario where the agent has access to communication from a human during

its learning process. In addition to receiving environmental reward, the agent may receive

a “right”/“wrong” label after performing an action. In related work, these labels are con-

verted into shaping rewards (e.g., “right” becomes +1 and “wrong” −1), which are then

used to modify Q-values, or to bias action selection. In contrast, we use this label directly

to infer what the human believes is the optimal policy in the labeled state.

Using feedback in this way is not a trivial matter of pruning actions from the search tree.

Feedback can be both inconsistent with the optimal policy and sparsely provided. Here, we

assume a human providing feedback knows the right answer, but noise in the feedback

channel introduces inconsistencies between what the human intends to communicate and

what the agent observes. Thus, feedback is consistent, C, with the optimal policy with

probability 0 < C < 1.1

We also assume that a human watching an agent learn may not provide feedback after

every single action, thus the likelihood,L, of receiving feedback has probability 0 < L < 1.

In the event feedback is received, it is interpreted as a comment on the optimality of the

action just performed. The issue of credit assignment that naturally arises with learning
1Note that the consistency of feedback is not the same as the human’s or the agent’s confidence the

feedback is correct.
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from real human feedback is left for future work (see [83] for an implementation of credit

assignment in a different framework for learning from human feedback).

5.3.2 Estimating a Policy from Feedback

It is possible that the human may know any number of different optimal actions in a state,

the probability an action, a, in a particular state, s, is optimal is independent of what labels

were provided to the other actions. Subsequently, the probability s, a is optimal can be

computed using only the “right” and “wrong” labels associated with it. We define ∆s,a to

be the difference between the number of “right” and “wrong” labels. The probability s, a

is optimal can be obtained using the binomial distribution as:

C∆s,a

C∆s,a + (1− C)∆s,a
, (5.1)

Although many different actions may be optimal in a given state, we will assume for

this work that the human knows only one optimal action, which is the one they intend to

communicate. In that case, an action, a, is optimal in state s if no other action is optimal

(i.e., whether it is optimal now also depends on the labels to the other actions in the state).

More formally:

C∆s,a(1− C)
∑
j 6=a ∆s,j (5.2)

We take Equation 5.2 to be the probability of performing s, a according to the feedback

policy, πF (i.e., the value of πF (s, a)). This is the Bayes optimal feedback policy given

the “right” and “wrong” labels seen, the value for C, and that only one action is optimal

per state. This is obtained by application of Bayes’ rule in conjunction with the binomial

distribution and enforcing independence conditions arising from our assumption that there

is only one optimal action. A detailed derivation of the above results is available in the

Appendix Section A.1 and A.2.
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5.3.3 Reconciling Policy Information from Multiple Sources

Because the use of Advise assumes an underlying Reinforcement Learning algorithm will

also be used (e.g., here we use BQL), the policies derived from multiple information

sources must be reconciled. Although there is a chance, C, that a human could make a

mistake when s/he does provide feedback, given sufficient time, with the likelihood of

feedback, L > 0.0 and the consistency of feedback C 6= 0.5, the total amount of infor-

mation received from the human should be enough for the the agent to choose the optimal

policy with probability 1.0. Of course, an agent will also be learning on its own at the same

time and therefore may converge to its own optimal policy much sooner than it learns the

human’s policy. Before an agent is completely confident in either policy, however, it has to

determine what action to perform using the policy information each provides.

We combine the policies from multiple information sources by multiplying them to-

gether: π ∝ πR × πF . Multiplying distributions together is the Bayes optimal method

for combining probabilities from (conditionally) independent sources [103], and has been

used to solve other machine learning problems as well (e.g., [104]). This is one of the pri-

mary advantages of working directly in policy space to combine information from multiple

sources. Note that BQL can only approximately estimate the uncertainty that each action

is optimal from the environment reward signal. Rather than use a different combination

method to compensate for the fact that BQL converges too quickly, we introduced the ex-

ploration tuning parameter, θ, from [102], that can be manually tuned until BQL performs

close to optimal.

5.4 Experimental Setup

We evaluate our approach using two game domains, Pac-Man and Frogger (see Fig. 5.1).

These domains present popular games which would be familiar to most people as well as

well as an understanding of how to play the game well. A more detailed description of the
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Pac-Man Frogger

Figure 5.1: A snapshot of each domain used for the experiments. Pac-Man consisted of a
5x5 grid world with the yellow Pac-Man avatar, two white food pellets, and a blue ghost.
Frogger consisted of a 4x4 grid world with the green Frogger avatar, two red cars, and two
blue water hazards.

domains is available in Chapter 1 .

5.4.1 Constructing an Oracle

We used a simulated oracle in the place of human feedback, because this allows us to

systematically vary the parameters of feedback likelihood, L, and consistency, C and test

different learning settings in which human feedback is less than ideal. The oracle was

created manually by a human before the experiments by hand labeling the optimal actions

in each state. For states with multiple optimal actions, a small negative reward (-10) was

added to the environment reward signal of the extra optimal state-action pairs to preserve

the assumption that only one action be optimal in each state.

5.5 Experiments

5.5.1 A Comparison to the State of the Art

In this evaluation we compare Policy Shaping with Advise to the more traditional Re-

ward Shaping, as well as recent Interactive Reinforcement Learning techniques. Knox and

Stone [74, 83] tried eight different strategies for combining feedback with an environmental

reward signal and they found that two strategies, Action Biasing and Control Sharing, con-

sistently produced the best results. These methods use human feedback rewards to modify
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the policy, rather than shape the MDP reward function to learn an alternate utility func-

tion. These strategies directly influence policy action selection and are the closest to our

proposed method. As will be seen, Advise has similar performance to these state of the art

methods, but is more robust to a noisy signal from the human and other parameter changes.

Action Biasing uses human feedback to bias the action selection mechanism of the

underlying RL algorithm. Positive and negative feedback is declared a reward rh, and−rh,

respectively. A table of values, H[s, a] stores the feedback signal for s, a. The modified

action selection mechanism is given as argmaxa Q̂(s, a) + B[s, a] ∗H[s, a], where Q̂(s, a)

is an estimate of the long-term expected discounted reward for s, a from BQL, and B[s, a]

controls the influence of feedback on learning. The value of B[s, a] is incremented by a

constant b when feedback is received for s, a, and is decayed by a constant d at all other

time steps.

Control Sharing modifies the action selection mechanism directly with the addition of a

transition between 1) the action that gains an agent the maximum known reward according

to feedback, and 2) the policy produced using the original action selection method. The

transition is defined as the probability P (a = argmaxaH[s, a]) = min(B[s, a], 1.0). An

agent transfers control to a feedback policy as feedback is received, and begins to switch

control to the underlying RL algorithm as B[s, a] decays. Although feedback is initially in-

terpreted as a reward, Control Sharing does not use that information, and thus is unaffected

if the value of rh is changed.

Reward Shaping, the traditional approach to learning from feedback, works by modify-

ing the MDP reward. Feedback is first converted into a reward, rh, or −rh. The modified

MDP reward function is R′(s, a) ← R(s, a) + B[s, a] ∗H[s, a]. The values to B[s, a] and

H[s, a] are updated as above.

The parameters to each method were manually tuned before the experiments to maxi-

mize learning performance. We initialized the BQL hyperparameters to 〈µs,a0 = 0, λs,a =

0.01, αs,a = 1000, βs,a = 0.0000〉, which resulted in random initial Q-values. We set the
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Ideal Case Reduced Consistency Reduced Frequency Moderate Case
(L = 1.0, C = 1.0) (L = 0.1, C = 1.0) (L = 1.0, C = 0.55) (L = 0.5, C = 0.8)

Pac-Man Frogger Pac-Man Frogger Pac-Man Frogger Pac-Man Frogger
BQL + Action Biasing 0.58 ± 0.02 0.16 ± 0.05 -0.33 ± 0.17 0.05 ± 0.06 0.16 ± 0.04 0.04 ± 0.06 0.25 ± 0.04 0.09 ± 0.06
BQL + Control Sharing 0.34 ± 0.03 0.07 ± 0.06 -2.87 ± 0.12 -0.32 ± 0.13 0.01 ± 0.12 0.02 ± 0.07 -0.18 ± 0.19 0.01 ± 0.07
BQL + Reward Shaping 0.54 ± 0.02 0.11 ± 0.07 -0.47 ± 0.30 0 ± 0.08 0.14 ± 0.04 0.03 ± 0.07 0.17 ± 0.12 0.05 ± 0.07

BQL + Advise 0.77 ± 0.02 0.45 ± 0.04 -0.01 ± 0.11 0.02 ± 0.07 0.21 ± 0.05 0.16 ± 0.06 0.13 ± 0.08 0.22 ± 0.06

Table 5.1: Comparing the learning rates of BQL + Advise to BQL + Action Biasing,
BQL + Control Sharing, and BQL + Reward Shaping for four different combinations of
feedback likelihood, L, and consistency, C, across two domains. Each entry represents
the average and standard deviation of the cumulative reward in 300 episodes, expressed as
the percent of the maximum possible cumulative reward for the domain with respect to the
BQL baseline. Negative values indicate performance worse than the baseline. Bold values
indicate the best performance for that case.

A
v
e

ra
g

e
 R

e
w

a
rd

−600

−400

−200

0

200

400

600

0 50 100 150 200 250 300
A

v
e

ra
g

e
 R

e
w

a
rd

−600

−400

−200

0

200

400

600

0 50 100 150 200 250 300

A
v
e

ra
g

e
 R

e
w

a
rd

−600

−400

−200

0

200

400

600

0 50 100 150 200 250 300

A
v
e

ra
g

e
 R

e
w

a
rd

−600

−400

−200

0

200

400

600

0 50 100 150 200 250 300

Number of Episodes Number of EpisodesNumber of Episodes Number of Episodes

BQL

BQL + Advise

BQL + Action Biasing
BQL + Control Sharing
BQL + Reward Shaping

Frogger – Ideal Case Frogger – Reduced ConsistencyPac-Man – Reduced Frequency Pac-Man – Moderate Case
(L = 1.0; C = 1.0) (L = 1.0; C = 0.55) (L = 0.1; C = 1.0) (L = 0.5; C = 0.8)

Figure 5.2: Learning curves for each method in four different cases. Each line is the average
with standard error bars of 500 separate runs to a duration of 300 episodes. The Bayesian
Q-learning baseline (blue) is shown for reference.

BQL exploration parameter θ = 0.5 for Pac-Man and θ = 0.0001 for Frogger. We used a

discount factor of γ = 0.99. Action Biasing, Control Sharing, and Reward Shaping used a

feedback influence of b = 1 and a decay factor of d = 0.001. We set rh = 100 for Action

Biasing in both domains. For Reward Shaping we set rh = 100 in Pac-Man and rh = 1 in

Frogger 2

We compared the methods using four different combinations of feedback likelihood,

L, and consistency, C, in Pac-Man and Frogger, for a total of eight experiments. Table 5.1

summarizes the quantitative results. Fig. 5.2 shows the learning curve for four cases.

In the ideal case of frequent and correct feedback (L = 1.0; C = 1.0), we see in Fig.

2We used the conversion rh = 1, 10, 100, or 1000 that maximized MDP reward in the ideal case to also
evaluate the three cases of non-ideal feedback.
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5.2 that Advise does much better than the other methods early in the learning process. A

human reward that does not match both the feedback consistency and the domain may fail

to eliminate unnecessary exploration and produce learning rates similar to or worse than

the baseline. Advise avoided these issues by not converting feedback into a reward.

The remaining three graphs in Fig. 5.2 show one example from each of the non-ideal

conditions that we tested: reduced feedback consistency (L = 1.0; C = 0.55), reduced

frequency (L = 0.1; C = 1.0), and a case that we call moderate (L = 0.5; C = 0.8).

Action Biasing and Reward Shaping3 performed comparably to Advise in two cases. Ac-

tion Biasing does better than Advise in one case in part because the feedback likelihood is

high enough to counter Action Biasing’s overly influential feedback policy. This gives the

agent an extra push toward the goal without becoming detrimental to learning (e.g., causing

loops). In its current form, Advise makes no assumptions about the likelihood the human

will provide feedback.

The cumulative reward numbers in Table 5.1 show that Advise always performed near

or above the BQL baseline, which indicates robustness to reduced feedback frequency and

consistency. In contrast, Action Biasing, Control Sharing, and Reward Shaping blocked

learning progress in several cases with reduced consistency (the most extreme example is

seen in column 3 of Table 5.1). Control Sharing performed worse than the baseline in three

cases. Action Biasing and Reward Shaping both performed worse than the baseline in one

case.

Thus having a prior estimate of the feedback consistency (the value of C) allows Advise

to balance what it learns from the human appropriately with its own learned policy. We

could have provided the known value of C to the other methods, but doing so would not

have helped set rh, b, or d. These parameters had to be tuned since they only slightly

3The results with Reward Shaping are misleading because it can end up in infinite loops when feedback
is infrequent or inconsistent with the optimal policy. In frogger we had this problem for rh > 1.0, which
forced us to use rh = 1.0. This was not a problem in Pac-Man because the ghost can drive Pac-Man around
the map; instead of roaming the map on its own Pac-Man oscillated between adjacent cells until the ghost
approached.
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correspond to C. We manually selected their values in the ideal case, and then used these

same settings for the other cases. However, different values for rh, b, and d may produce

better results in the cases with reduced L or C. We tested this in our next experiment.

5.5.2 How The Reward Parameter Affects Action Biasing

In contrast to Advise, Action Biasing and Control Sharing do not use an explicit model of

the feedback consistency. The optimal values to rh, b, and d for learning with consistent

feedback may be the wrong values to use for learning with inconsistent feedback. Here, we

test how Action Biasing performed with a range of values for rh for the case of moderate

feedback (L = 0.5 and C = 0.8), and for the case of reduced consistency (L = 1.0 and

C = 0.55). Control Sharing was left out of this evaluation because changing rh did not

affect its learning rate. Reward Shaping was left out of this evaluation due to the problems

mentioned in Section 5.5.1. The conversion from feedback into reward was set to either

rh = 500 or 1000. Using rh = 0 is equivalent to the BQL baseline.

The results in Fig. 5.3 show that a large value for rh is appropriate for more consistent

feedback; a small value for rh is best for reduced consistency. This is clear in Pac-Man

when a reward of rh = 1000 led to better-than-baseline learning performance in the mod-

erate feedback case, but decreased learning rates dramatically below the baseline in the

reduced consistency case. A reward of zero produced the best results in the reduced con-

sistency case. Therefore, rh depends on feedback consistency.

This experiment also shows that the best value for rh is somewhat robust to a slightly

reduced consistency. A value of either r = 500 or 1000, in addition to r = 100 (see

Fig. 5.2.d), can produce good results with moderate feedback in both Pac-Man and Frog-

ger. The use of a human influence parameter B[s, a] to modulate the value for rh is presum-

ably meant to help make Action Biasing more robust to reduced consistency. The value for
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Figure 5.3: How different feedback reward values affected BQL + Action Biasing. Each
line shows the average and standard error of 500 learning curves over a duration of 300
episodes. Reward values of rh = 0, 500, and 1000 were used for the experiments. Re-
sults were computed for the moderate feedback case (L = 0.5; C = 0.8) and the reduced
consistency case (L = 1.0; C = 0.55).

B[s, a] is, however, increased by b whenever feedback is received, and reduced by d over

time; b and d are more a function of the domain than the information in accumulated feed-

back. Our next experiment demonstrates why this is bad for IRL.

5.5.3 How Domain Size Affects Learning

Action Biasing, Control Sharing, and Reward Shaping use a ‘human influence’ parameter,

B[s, a], that is a function of the domain size more than the amount of information in ac-

cumulated feedback. To show this we held constant the parameter values and tested how

the algorithms performed in a larger domain. Frogger was increased to a 6 × 6 grid with

four cars (see Fig. 5.4). An oracle was created automatically by running BQL to 50,000

episodes 500 times, and then for each state choosing the action with the highest value. The

oracle provided moderate feedback (L = 0.5; C = 0.8) for the 33360 different states that

were identified in this process.

Figure 5.4 shows the results. Whereas Advise still has a learning curve above the BQL

baseline (as it did in the smaller Frogger domain; see the last column in Table. 5.1), Action

Biasing, Control Sharing, and Reward Shaping all had a negligible effect on learning, per-

forming very similar to the BQL baseline. In order for those methods to perform as well

as they did with the smaller version of Frogger, the value for B[s, a] needs to be set higher

and decayed more slowly by manually finding new values for b and d. Thus, like rh, the
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optimal values to b and d are dependent on both the domain and the quality of feedback.

In contrast, the estimated feedback consistency, Ĉ, used by Advise only depends on the

true feedback consistency, C. For comparison, we next show how sensitive Advise is to a

suboptimal estimate of C.

5.5.4 Using an Inaccurate Estimate of Feedback Consistency

Interactions with a real human will mean that in most cases Advise will not have an exact

estimate, Ĉ, of the true feedback consistency, C. It is presumably possible to identify a

value for Ĉ that is close to the true value. Any deviation from the true value, however, may

be detrimental to learning. This experiment shows how an inaccurate estimate of C affected

the learning rate of Advise. Feedback was generated with likelihood L = 0.5 and a true

consistency of C = 0.8. The estimated consistency was either Ĉ = 1.0, 0.8, or 0.55.

The results are shown in Fig. 5.5. In both Pac-Man and Frogger using Ĉ = 0.55 reduced

the effectiveness of Advise. The learning curves are similar to the baseline BQL learning

curves because using an estimate of C near 0.5 is equivalent to not using feedback at all.

In general, values for Ĉ below C decreased the possible gains from feedback. In contrast,

using an overestimate of C boosted learning rates for these particular domains and case of

feedback quality. In general, however, overestimating C can lead to a suboptimal policy

especially if feedback is provided very infrequently. Therefore, it is desirable to use Ĉ as

the closest overestimate of its true value, C, as possible.

5.6 Summary and Discussion

Overall, our experiments indicate that it is useful to interpret feedback as a direct comment

on the optimality of an action, without converting it into a reward or an expected action

utility. Advise was able to outperform tuned versions of Action Biasing, Control Sharing,

and Reward Shaping. The performance of Action Biasing and Control Sharing was not as

good as Advise in many cases (as shown in Table 5.1) because they use feedback as policy
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information only after it has been converted into a reward.

Action Biasing, Control Sharing, and Reward Shaping suffer because their use of ‘hu-

man influence’ parameters is disconnected from the amount of information in the accumu-

lated feedback. Although b and d were empirically optimized before the experiments, the

optimal values of those parameters are dependent on the convergence time of the under-

lying RL algorithm. If the size of the domain increased, for example, B[s, a] would have

to be decayed more slowly because the number of episodes required for BQL to converge

would increase. Otherwise Action Biasing, Control Sharing, and Reward Shaping would

have a negligible affect on learning. Control Sharing is especially sensitive to how well the

value of the feedback influence parameter, B[s, a], approximates the amount of information

in both policies. Its performance bottomed out in some cases with infrequent and incon-

sistent feedback because B[s, a] overestimated the amount of information in the feedback

policy. However, even if B[s, a] is set in proportion to the exact probability of the correct-

ness of each policy (i.e., calculated using Advise), Control Sharing does not allow an agent

to simultaneously utilize information from both sources.

Advise has only one input parameter, the estimated feedback consistency, Ĉ, in contrast

to three. Ĉ is a fundamental parameter that depends only on the true feedback consistency,

C, and does not change if the domain size is increased. When it has the right value for Ĉ,

Advise represents the exact amount of information in the accumulated feedback in each
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state, and then combines it with the BQL policy using an amount of influence equivalent

to the amount of information in each policy. These advantages help make Advise robust to

infrequent and inconsistent feedback, and fair well with an inaccurate estimate of C.

A primary direction for future work is to investigate how to estimate Ĉ during learning.

That is, a static model of C may be insufficient for learning from real humans. An alter-

native approach is to compute Ĉ online as a human interacts with an agent. We are also

interested in addressing other aspects of human feedback like errors in credit assignment.

A good place to start is the approach described in [83] which is based on using gamma

distributions. Another direction is to investigate Advise for knowledge transfer in a se-

quence of reinforcement learning tasks (cf. [105]). With these extensions, Advise may be

especially suitable for learning from humans in real-world settings.

This work defined the Policy Shaping paradigm for integrating feedback with Rein-

forcement Learning. We introduced Advise, which tries to maximize the utility of feedback

using a Bayesian approach to learning. Advise produced results on par with or better than

the current state of the art Interactive Reinforcement Learning techniques, showed where

those approaches fail while Advise is unaffected, and it demonstrated robustness to infre-

quent and inconsistent feedback. With these advancements, it may help to make learning

from human feedback an increasingly viable option for intelligent systems.
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CHAPTER 6

EXPLORATION IN MONTE CARLO TREE SEARCH USING ACTION

ABSTRACTIONS

Monte Carlo Tree Search (MCTS) is a family of methods for planning in large domains.

It focuses on finding a good action for a particular state, making its complexity indepen-

dent of the size of the state space. However such methods are exponential with respect to

the branching factor. Effective application of MCTS requires good heuristics to arbitrate

action selection during learning. In this work we present a policy-guided approach that

utilizes action abstractions, derived from human input, with MCTS to facilitate efficient

exploration. We draw from existing work in hierarchical reinforcement learning, interac-

tive machine learning and show how multi-step actions, represented as stochastic policies,

can serve as good action selection heuristics. We demonstrate the efficacy of our approach

in the PacMan domain and highlight its advantages over traditional MCTS.

6.1 Introduction

Monte Carlo Tree Search (MCTS) [67] algorithms have been used to address problems with

large state spaces. They focus on solving the policy for a single state—the state the agent is

in—making the planning time independent of the total number of the states. MCTS covers

a family of algorithms including Sparse Sampling [25] and its successors, UCT [65] and

FSSS [66]. It has grown rapidly in visibility due to its early successes in the boardgame Go

and by winning AAAI’s General Game Playing competitions [106, 107]. More recently,

with the growth of deep learning research [68], MCTS methods have been combined with

function approximation using deep learning to achieve state-of-the-art performance in Atari

games [69] and Go [8]. These results have highlighted the use of MCTS for planning in

large domains.
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The successes however have their share of costs. Tree search methods are, in general,

exponential in their depth, with a branching factor that depends on the number of possible

actions and subsequent states at each node. Thus to make MCTS effective requires the use

of heuristics that help action selection during tree search and roll-out execution. Existing

methods (UCT, FSSS) utilize confidence bounds on the value function[14], by tracking

state-action pair visitations, to decide which actions to explore and exploit. These meth-

ods are sample intensive and pay a substantial computational cost for every step of action

selection.

In parallel, researchers have focused on how to leverage human help to improve learn-

ing and planning, including work in learning by demonstration [71], imitation learning

[108], and interactive machine learning [109]. The motivation for these works stems from

the observation that (1) human help is often available, and (2) humans excel at some im-

portant tasks that automated methods have difficulty with. Application of human input has

yielded promising results such as helicopter flying [110], teaching a AIBO robot basic soc-

cer skills [111] and played an important role in the success of AlphaGo [50]. Of particular

importance in this work is the ability of humans to help autonomous agents explore promis-

ing parts of the state space [112] and the use of human input to construct action abstractions

that can decompose complex problems in simpler subparts [63].

In this chapter, we show how we can leverage recent work in utilizing action abstrac-

tions for reinforcement learning [113] to help satisfy the requirements of MCTS without

incurring the expensive computational costs. Action abstractions like Options [51] and

Constraints [52] represent multi-step policies that can significantly speed up planning in

reinforcement learning. This form of knowledge allows the agent to lookahead over mul-

tiple timesteps, obtain better estimates of the utility of an action and propagate this infor-

mation to multiple states. We note the use of constraints as actions While options and con-

straints are similar at a high-level, these abstractions differ in their respective definitions

and tackle different aspects of the problem. Options represent abstractions that capture
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goals to achieve in a task while constraints capture situations to avoid. These ideas have

been successfully combined and utilized in Q-learning [55] to solve gridworld domains.

To our knowledge, this is the first method that utilizes constraints as actions abstractions

for MCTS. In this work we characterize specific properties of these action abstractions and

show how they can used as action pruning heuristics and high quality roll-out policies for

MCTS to solve large problems. In particular, we show that:

• Options offer coherent, near-optimal action sequences for solving sub-tasks. They

allow us to increase the effective search depth of MCTS methods.

• Constraints complement options by identifying actions not to follow. They can act

as both a form of pruning and a way to encapsulate an intelligent roll-out policy.

We leverage these properties to develop a novel approach, Policy-Guided Sparse Sampling

(PGSS), that can effectively use such abstractions to overcome some of its limitations and

plan efficiently. Using the PacMan domain, we show how PGSS satisfies the requirements

for efficient exploration in MCTS [114].

6.2 Approach

Here we discuss properties of Monte Carlo Tree Search (MCTS) for action-value esti-

mation, and our method of improving it with auxiliary information in the form of action

abstractions.

6.2.1 Policy-Guided Sparse Sampling

As discussed in Section 6.1, the key property in determining the efficiency of MCTS is

the implicit tree-search policy of the algorithm. Non-interactive approaches to designing

this search bias are value-based, and require the agent to visit states multiple times in or-

der to compute the relevant statistics for directing future search. This requirement can be
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intractable for a number of reasons, including a high branching factor, strict realtime dead-

lines, a γ close to 1, or a transition model that is expensive to query (e.g., requires running a

physics simulation). This motivates the main idea behind Policy-Guided Sparse Sampling

(PGSS): to construct the search policy explicitly by using a combination of different action

abstractions with desirable properties.

Action Abstractions

We noted in Section 6.1 that MCTS presents two points for biasing action selection: 1)

during tree search and 2) during roll-out. This suggests the use of two different and com-

plementary policy classes: options and constraints. The use of these policies in MCTS is

highlighted in Figure 6.1.

Options. The first policy class will serve to augment the set of primitive actions, allowing

deeper look-ahead in the tree. Following [51], an option is a sub-policy with clearly de-

fined initiation and termination conditions, and is generally used to encapsulate sub-tasks

in a planning problem. Options allow the planner to make large jumps in the state space:

assuming the options’ policies are locally optimal for their subtask, searching at the level

of options increases the effective branching depth of the planner by a factor of do, where do

is the expected length of the option.

Constraints. The second type of abstraction [52] encodes a bias to disallow certain ac-

tions, and has two modes of operation: (1) as a action-pruning heuristic during tree expan-

sion, and (2) as a roll-out policy for obtaining value estimates for the leaf nodes. In an

uninformed implementation of MCTS, the roll-out policy is a random policy, significantly

underestimating the actual value of leaf nodes. By comparison, a policy that avoids termi-

nal states where one cannot escape negative reward will generally provide a better estimate

of the value of the leaf nodes. We refer to a policy designed to achieve this survivor effect

as a constraint, to indicate that it restricts the agent from executing actions that result in
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Figure 6.1: Monte Carlo Tree Search highlighting where we use both constraints and op-
tions for effective exploration.

terminal states. A constraint is represented by a policy that satisfies its conditions, along

with an initiation set that indicates when the policy of the constraint should be taken into

account. We find the constraint policy to be useful not only for biasing action selection

during the tree search, but also as a self-contained roll-out policy. As we discuss in the

next section, this provides a soft form of tree pruning to remove branches unlikely to lead

to high value states.

Policies as Heuristics

When considered within MCTS, options and constraints provide ideal heuristics to help

bias tree search, allowing for deeper or more accurate value estimation. We first show how

to incorporate constraint policies. Because a constraint explicitly represents the permis-

sible actions for all states, it can be used for pruning at each node. In order to prevent

constraints from filtering out optimal actions, and thereby removing the theoretical guaran-

tees of MCTS, we apply the softmax operation using an auxiliary β parameter to define a
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Algorithm 4 Policy-Guided Sparse Sampling
PGSS(s, d, O)
if d = H then return 0
end if
if O = ∅ OR TO(s) > rand then

% Sample an available option
O ∼ {O : IO(s) = true}

end if
if O 6= ∅ AND d < dmax then

% Sample from constrained option
a ∼ P (a|s) ∝ PπO(a|s)× Pπc (a|s)β∑

a∈A Pπc (a|s)β

else
% Sample directly from constraint
a ∼ Pπc (a|s)β∑

a∈A Pπc (a|s)β

end if
s′ ∼ P (s′|s, a)
Qss(s, a) = R(s, a) + γPGSS(s′, d+ 1, O)
return maxa∈AQss(s, a)

probability distribution over actions for each state:

P (a|s) =
Pπc(a|s)β∑
a∈A Pπc(a|s)β

(6.1)

πc represents the constraint policy and β controls how peaked the distribution is over the

preferred action, controlling how much to “trust” the constraint. Note that constraints are

represented as typical policies, but encode a preference for “safe” actions, with entropy

proportional to β. By incorporating the soft-maxed constraint, we can achieve an arbitrarily

safe union of policies.

For options, we first review the basic theory of offline planning with options (e.g., value

iteration) [51]. An option is defined as a tuple < I, T, π > representing the set of states Io

where the option can be initiated, a distribution To over states for terminating the option,

and the option policy πo itself. Traditional approaches are based on Bellman-updates over

primitive actions, so planning with options requires an expected reward and terminal state
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for each option.

E[R|πo(s)], E[s′|πo(s)] (6.2)

We can extend MCTS to incorporate options by adding them as additional actions to all

states in their respective initiation sets IO, and terminate them during each step according

to their respective termination probabilities TO(s). In this way, MCTS performs the option

evaluation. With the expected length of the option counting towards the total depth reached

by the agent, options are serving to bias search towards specific trajectories that we have a

priori reason to believe are useful.1

Here we emphasize the need for options and constrains to be handled differently. In our

formulation, an option always suggests an action to take while a constraint rarely prefers

an action to take unless the agent is about to enter a dire circumstance. More specifically,

the use of constraints at the leaves of the tree keeps the agent ”alive” by avoiding low ex-

pected utility and out-performs options at that task. Similarly options drive one towards

goals and out-perform constraints at those tasks. This characteristic makes them qualita-

tively different and therefore should be managed differently in order to exploit their unique

properties.

Algorithm 4 is our approach to Policy-Guided Sparse Sampling. The algorithm re-

cursively constructs a search tree to branching depth dmax, and performs constraint policy

roll-outs to the horizon H . πc is the constraint policy, πO is an option policy, IO(s) returns

true if option O can be initiated from state s, and TO(s) is the probability of terminating op-

tion O in state s. Our implementation branches over primitive actions only when there are

no valid options for the current state. This was a reasonable restriction for our experiments,

since the options fully covered the set of appropriate actions for all time-steps. However,

in general we would typically branch over primitives as well.

1The availability of the constraint puts a minor modification on the option’s roll-out: since the constraint
can preempt the option, we’re actually taking samples of a hybrid option+constraint policy for each option
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Combining Multiple Constraints

In domains where multiple constraints are required to be satisfied, they can be combined

in a straightforward manner. For any given state s we create a list of the constraints that

are activated there and then generate a set by taking a union of all the actions the con-

straints suggest to take. We then reweigh the probabilities of this action set according to

the outcome of disobeying each individual actions suggested by the respective constraints.

We now have a stochastic distribution over actions that takes into account information of

multiple constraints. We draw from it and proceed down the tree to the next node. More

details are available in [52].

6.3 Experiments

In this section we present empirical evaluation of our approach by instantiating it on the

PacMan2 domain. PacMan naturally lends itself to be abstracted by hierarchical decom-

positions and is a domain which poses difficulties for tree search methods due to its long

horizon. For example, in our experiments, a 25x25 grid with four ghosts and four power

pellets has a total of over 1015 states with an effective depth of 340 steps. We implemented

the necessary abstractions using human interaction.

6.3.1 Information From Humans

In Tokadli and Feigh [2015], the authors describe useful action abstractions for the PacMan

domain and motivate how humans naturally provide this information when interacting with

the domain. Using this work as motivation, we leverage existing interactive learning meth-

ods to learn options [61] and constraints [52]. These approaches use human input in the

form of demonstrations to efficiently learn probabilistic policies that define the necessary

heuristics.
2The version of PacMan we used is an open-source implementation available online at http://www-

inst.eecs.berkeley.edu/ cs188/pacman/pacman.html
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(a) Start (R = 0) (b) Without Constraint (R
= -495)

(c) With Constraint (R =
497)

Figure 6.2: Starting map configurations for the dead-end problem (left), terminal state for
flat MCTS agent (middle), and optimal solution discovered by PGSS (right). Total reward
shown in parentheses

In our tests, we learn the heuristics from human interaction and refer to existing work

[53] to confirm their utility for learning to solve PacMan. As a result of this, we learned the

options eatFood and eatCapsule, and the constraint avoidGhost (avoids the nearest one).

We first describe a simple experiment that illustrates the advantages of using a policy

biased approach in MCTS and then show how our approach scales to problems of increased

horizon depths.

6.3.2 The Dead-End Experiment

The dead-end experiment is a simple problem designed to provide intuition about the util-

ity of constraint policies in the context of Monte Carlo search. By explicitly asking the

question “is this leaf node a state that I can survive in?”, the constraint gives the agent a

significant advantage in look-ahead. In particular, a constraint policy provides a more op-

timistic lower bound than a random policy for the values of leaf nodes in the search tree.

We used a small PacMan grid shown in Figure 6.2a with an effective horizon depth of 18

steps. The ghosts move directionally towards the agent.

As Figures 6.2a-6.2c show, a flat MCTS agent sees the nearest food and goes for it,

not realizing that it’s a dead-end. By doing an avoidGhost roll-out from this state, the

constraint agent discovers that it is eventually terminal, backs up that reward to the start

state, and chooses to go around instead. When using a random rollout policy, the agent is
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unlikely to escape the ghost regardless of whether Pacman is trapped. Therefore this agent

is less capable of discriminating between the trap and the open space, and is more likely to

make the wrong choice.

We note that the inclusion of options as actions that the agent can branch over is a

significant advantage as it enables deeper lookahead during rollouts. Overall the PGSS

agent can rollout the eatFood option policy to obtain reward from the food pellet and at the

same time use the constraint to avoid the ghost. This combination allows PGSS to perform

optimally using very small search depths.

6.3.3 Scalability

In this experiment we investigate 1) how action abstractions compare to each other and

2) their performance on problems of increasing horizons. We achieve this by implement-

ing several policy-based variants of the PGSS agent in PacMan domains of different sizes.

We note that by increasing the size, the effective horizon increases making it significantly

harder for MCTS algorithms. We use four variants of PGSS agents. The original sparse-

sampling algorithm which branches only over primitive actions, as well as three policy-

guided variants: using only options, using only constraints, and using both. We also com-

pare the performance of these agents with that of an average human player. We show

the results of this experiment in Figure 6.3a. The average rewards were computed over 5

trials. We limited search depth to 34 steps, after which we evaluated the constraint as a

rollout policy 3 times. Inside the constraint the Boltzmann temperature value was 10. In

these experiments the ghost directions were random. The agents’ decisions were made in

real-time.

Unsurprisingly, the flat agent proved to be the worst in terms of reward, outcome

(win/lose), and runtime. While a small look-ahead is sufficient to win for tiny domains,

we found that larger maps required a tree depth that was prohibitively expensive to com-

pute (due to the physics engine). Adding the options extended the effective look-ahead,
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and significantly increased the average reward per episode on larger maps; however, op-

tions also frequently led to bad terminal states, and this agent eventually died in 4 out of 5

trials on the largest map.

Replacing the options with the constraint meant the agent was less likely to die prema-

turely, but sacrificed the look-ahead depth of options. While this agent performed well in

smaller maps, it frequently became disconnected from regions of reward (food) in larger

maps, and wandered randomly until trapped or chased away by a ghost. As shown before,

by reflecting whether the agent can stay alive from the leaf nodes of tree, the constraint

is essentially a dead-end detection mechanism. Using only the constraint, we observed

that the agent ate all the food in a neighborhood and then couldn’t “see” outside the sample

horizon of the constraint and so wandered randomly. Eventually a ghost would either chase

him towards a good region or, especially in the big maps, a dead-end.

Fortunately, the strengths and weaknesses of our constraint and options agents are com-

plementary: the options roll-outs find deep action trajectories that are likely to be good, and

the constraints help ensure that they do not lead to undesirable states. We found the op-

tions+constraints agent to be the superior policy across all problem sizes in terms of speed,

total reward, and final outcome. Taking a closer look at these episodes, it seemed that the

primary motif this agent excelled at, as compared to the others, was eating ghosts. Ghosts

can only be eaten for narrow windows after eating a power pellet, and it typically requires

a long and specific sequence of actions to achieve this result. The probability of an unin-

formed search discovering this full trajectory by chance was too low to observe for ghosts

more than a couple steps away from PacMan. In addition to achieving the best reward, the

options+constraint agent produced the only policy that could reliably beat the largest map

with a effective horizon depth of 350 steps. (Figure 6.3a).

We have also tested the PGSS algorithm on other related domains (for example Cat and

Mouse) that lend themselves to action abstractions and were able to achieve similar results.
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(a) Relative Reward (b) Episode on Largest Map

Figure 6.3: Average reward obtained per trial versus map size for different configurations
(left), and a sample run on the largest map (right). The numbers in brackets indicate the
win/loss ratio.

6.4 Summary and Discussion

Our experiments yield insights about the use of human-derived action abstractions in MCTS

and we highlight them here. An interesting observation is that when sampling the constraint

policy, it is possible for us to reach the goal state. In these cases, the computed value for

constraint evaluation will be more informative as it includes information about the reward

at the goal state. The effect of using such constraints is that it allows us to learn a good

policy with a smaller tree depth. We note that this might not be true in all scenarios; how-

ever when constructing constraints for a domain, we believe that knowledge of constraints

potentially reaching the goal can be utilized to perform more efficient planning.

We view the applicability of PGSS as a way of addressing the class of MDPs in which

not only is it intractable to compute a policy for the entire state space, but even for a

single state. In Section 6.2.1 we explained that modern MCTS algorithms like UCT and

FSSS assume the agent can afford to explore certain parts of the space quite extensively.

In fact, FSSS only terminates after closing all nodes in its search tree, which requires

visiting every possible state-action transition out to the problem horizon H . This implies

that the time required by FSSS to return an action for the current state is exponential in

the problem depth. Clearly there are many MDPs in which this is infeasible, such as in
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our PacMan results from Figure 6.3a. These were obtained in real-time, which was only

possible by shifting to policy-based heuristic that relaxed the need to explore the search-tree

exhaustively.

In our tests on instantiating action abstractions, we find that interactive learning ap-

proaches provide abstractions more suited for PGSS than autonomous learning methods.

We also note that incorporating action abstractions in MCTS as in PGSS provides a general

framework that is applicable to other variants of MCTS as well (UCT, FSSS). These meth-

ods would only stand to gain performance speed-ups from the use of domain heuristics in

the form of temporally extended actions.

In this work we have described the compatibility between action abstractions learned

from humans and the requirements of MCTS. We presented a unifying framework that

combines two different kinds of action abstractions and used them as pruning heuristics

and intelligent roll-out policies in MCTS. Our experiments in the PacMan domain show

that the PGSS algorithm can be used to solve problems of non-trivial horizon depths and

thus have a dramatic effect on the performance of the planner. PGSS can also be applied to

other domains, ones that can benefit from action abstractions, in a straightforward manner.

We would like to highlight that our approach can be viewed as an addendum to existing tree

search algorithms, i.e. integrating them with action abstractions in a specific manner and

showing its advantages. Extending it to other state-of-the-art techniques in MCTS literature

like UCT is a promising area of future work. We are also interested in exploring other kinds

of action abstractions that PGSS can utilize.
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CHAPTER 7

CONCLUSION AND FUTURE WORK

In this chapter we summarize the work presented in the dissertation along with the proposed

hypotheses and goals. We cover what was achieved in each contribution and highlight key

findings relevant to the thesis.

7.1 Overview

In this dissertation we focused on the topic of exploration for reinforcement learning. The

exploration-exploitation trade off is a central challenge in RL domains and there are sev-

eral methods in the literature that serve to tackle this under different conditions and using

different heuristics. We proposed several policy-based approaches where the primary goal

is to learn an adaptive exploration policy separate from the optimal control policy to guide

exploration autonomously as well as with the help of human input.

We hypothesized that an approach focused on learning to explore as policies directly

helps overcome some of the computational challenges involved in existing approaches.

Additionally we hypothesize that such an approach when used in the interactive setting

with information from people can be robust to noisy information from humans.

We presented policy-based methods that serve to

1. bias an RL agent’s exploration to cover the search space of the domain efficiently

2. balance the exploration-exploitation trade-off for an RL agent learning from human

signals

We restate the thesis of the dissertation: policy-guided exploration for reinforcement

learning agents leads to faster convergence to the optimal policy than automatic value-
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based and state-of-the-art learning from demonstration methods and is robust to noisy

human signals

7.2 Summary of What Was Achieved

We researched several approaches to learn an exploration policy that is useful from the per-

spective of the agent’s learning algorithm, using statistical measures of regression methods.

We use this to design an interactive and autonomous learning approach and were able to

show its benefits in variety of domains with long horizons and sparse rewards. In one of

the methods, we were also able to relax the requirement of optimal human input.

We presented a Bayes’ optimal approach of combining human binary input with Bayesian

reinforcement learning and how the combined approach is robust to noisy human signals.

Finally we presented a method that uses human demonstrations as action abstractions to

improve exploration for Monte Carlo tree search methods with informed constraints on the

action selection.

7.3 Main Contributions

Here we highlight the individual research projects that support the claims and contributions

made in this dissertation.

7.3.1 Agent-guided Exploration from Human Demonstration

In this work we use statistical measures of regression methods, leverage and discrepancy,

as metrics useful for exploration. Leverage specifies if an observation is an outlier or if it is

within the convex hull of the observations already experienced. Discrepancy allows us to

measure how much the trained model error depends on the datapoint. Together these mea-

sures inform the agent how influential each datapoint is towards the model being learned.

Using this approach we capture areas of uncertainty directly from the agent’s perspec-

tive without the need to design domain specific heuristics. When such a datapoint (state-
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action pair) is flagged as influential, we propose that to achieve good exploration, we should

encourage the agent to visit the datapoint to collect more information thereby reducing its

leverage and its discrepancy. To facilitate this, we use human input to guide the agent

towards these areas.

Human input in this case is not required to examples of optimal behavior. Instead the

human is only required to be aware of the dynamics of the domain and the knowledge of

how to use the actions available to the agent to guide it to the influential datapoint.

We learn an exploration policy using these demonstrations which in turn encourage

visitation to the important datapoints. Note that once the datapoint has been visited enough

number of times, two outcomes are likely: a) its influence reduces and b) the agent has a

better chance of further extending the boundaries of known datapoints.

We implemented our approach on an instructional gridworld to highlight the utility of

the statistical measures and on Frogger to show that learned exploration policies lead to

faster convergence to the solution than learning from optimal demonstration and model-

free exploration strategies. We were able to show the effectiveness of this approach on

variants of the Frogger domain which lead to a high-dimensional, long goal horizons and

sparse reward domain.

7.3.2 Autonomous Agent-guided Exploration

We build on the work on learning exploration policies using human demonstrations to show

how we can learn the exploration policies autonomously. The agent, guided by the same

statistical measures, solves for the exploration policy as a separate MDP to help the agent

explore.

When an observation is recognized as influential, an auxiliary learning problem is

started where the policy to be learned is to reach influential datapoint. Once the policy

is learned, additional samples are gather to reduce the influence of the datapoint and help

the agent visit other parts of the search space.
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This approach removes the requirement of human input which in many domains is

unavailable or even infeasible, i.e. where the human is unable to provide actions to help the

agent explore due to abstract action space of the agent (say robot joint angles). The rate is

convergence is slower than with human input, however we show that is able to converge to

the optimal policy efficiently with improved sample complexity over existing value-based

approaches.

More recently, deep reinforcement learning has had a large body of success and we

show how this work can be integrated into existing off-policy methods to facilitate explo-

ration without significant changes. We highlighted the performance of the agent in classical

control problems, a high-dimensional game domain and a popular Atari game with image

input.

7.3.3 Policy Shaping with Humans

The previous work learns an exploration policy autonomously or from human input. How-

ever it does not directly tackle the problem of balancing the trade off between exploration

and exploitation in a principled manner. In this work, we take a closer look at approaches

in this direction.

We present a probabilistic approach to combining human signals with a reinforcement

learning model. We model human feedback as a policy signal with an estimate of the

quality and quantity of the input for the behavior to be learned. This input along with

Bayesian RL presents a Bayes’ optimal approach to combining information from these

sources without the need for any heuristics.

Frequent high quality human inputs reinforce the suggested behavior while noisy hu-

man data shifts the balance towards the Bayesian rl algorithm’s prediction. We implement

the methods on popular game domains PacMan and Frogger and when compared with state-

of-the-art interactive learning methods, were able to show the approach is robust to noisy

human input and less sensitive to parameter selections.
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7.3.4 Exploration in Monte Carlo Tree Search using Action Abstractions

The previous work used human input as demonstrations for model-free off-policy reinforce-

ment learning algorithms. In this work, we provide an alternate interpretation to exploratory

human demonstrations.

We show how human demonstrations, when instantiated as temporal action abstrac-

tions, can be used to overcome the difficulties of Monte Carlo reinforcement learning

methods. Monte Carlo methods rely on the quality of the metric used to guide action

selection during the expansion step and the information from rollout policies to evaluate

the long-term utility of taking an action in a state.

In this work we show how human can provide action abstractions in the form of options

and constraints. These instantiations can then be used in MCTS to bias action selection

during node expansion (with options) and as an informative rollout policy (with constraints)

to solve the domain more efficiently than withouts.

To test this approach, we experimented with scaled up version of PacMan which re-

quires deeper search in order to perform well and were able to show our approach outper-

forms MCTS methods. We note that the addition of human input here formulates domain

knowledge and provides the basis for the improvement in performance. With this obser-

vation, the goal of the work is to motivate the use of action abstractions in this manner as

domain knowledge in MCTS methods.

7.4 Limitations and Future Work

With the main contributions stated, we now look at the limitations of the approaches and

highlight ways in which they can be address in future work.

Human Input The work on EfD and Policy Shaping require a human to provide inputs

to the algorithms to facilitate the learning of an exploration or the optimal policy. As men-

tioned, this is often not feasible due to a number of reasons. Primary among them is the
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unavailability of a human to provide input. Even in the case where a human is available, the

human might not be familiar with the domain and its dynamics to provide inputs useful to

the underlying algorithms. Further in domains where the agent has access to a knowledge-

able human, the mode of interaction with the human might not be conducive for critique

or demonstrations. For example if the agent is a robot operating in joint space. It could be

hard for a human to provide a demonstration of what the robot should by controlling the

robot in joint space.

We tackle some of these questions using the autonomous policy exploration method.

However we believe there is interesting work in this space related to designing user inter-

faces to acquire the necessary human information across a variety of domains. Secondly

there is an exciting area of research focusing on learning action abstractions automatically

and from humans which could more directly assist Monte Carlo methods.

Bayesian RL In our work we were able to combine binary human critique with Bayesian

RL and showed its advantages. The limitation here is that Bayesian RL methods do not

scale well as the problems become more complex. As such the applicability of this ap-

proach is currently limited in this setup.

A promising direction to take this work is to relax the strict requirement of using

Bayesian RL and instead use other probabilistic approaches which a principle manner to

measure uncertainty. One such approach is using Gaussian Processes (GPs). Combining

human input with GPs will allow us to extend the applications of Policy Shaping beyond

the domains shown in this dissertation.

Continuous Control The methods described in this dissertation learn exploration poli-

cies using statistical measures setup for continuous state and discrete action problems. This

is currently a limitation as it would not be applicable to be used with actor-critic methods

that learn policies for continuous control. Applications involving robotics primary would

be outside the scope of the algorithm.
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To further extend the autonomous approach, as future work we would have to modify

influence measures to take into account the action followed by learning the exploration pol-

icy to reach similar datapoints to gain more information about them. This is a straightfor-

ward extension mathematically, however the primary cost is in the computational resources

required to keep track of influential state and action pairs which in continuous space are

harder to visit often. This would require further empirical research.

7.5 Final Remarks

In this dissertation we showed the advantages and limitations of learning and utilizing an

exploration policy autonomously and from human input in a variety of problems with vary-

ing characteristics. We were able to show our approaches lead to faster convergence to

the optimal policy than value-based methods and are robust to noisy human input. The

work presented takes a step towards realizing solutions to reinforcement learning on com-

plex problems in a sample efficient manner. Furthermore this line of work raises several

questions that we believe will serve to make the methods usable across a wider class of

problems while maintaining its desirable properties.
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