MDP-based Planning for a Table-top Search and Find Task

Ram Kumar Hariharan, Kelsey Hawkins, Kaushik Subramanian

Abstract— For mobile manipulators in human environments,
a basic yet important task is object fetching. Even if the robot
knows which table the goal object is on, it is often in a cluttered
environment. The goal object could be partially occluded,
underneath other objects, or completely covered. We investigate
the task of optimally locating and grasping a goal object in a
cluttered environment. Since, to a robot, the world is rife with
uncertainty, we approach the task using two distinct Markov
Decision Process (MDP) representations. Our first design is a
grid-based representation which takes a very simplistic Partially
Observable MDP (POMDP) approach in the case where vision
is highly unreliable. The representation is solved using Point
Value Iteration and the advantages are discussed. Our second
approach attempts to exploit a more informed vision system.
A tree of obstructing objects is gathered from the scene
and planning is done over the possible tree configurations.
Confidence values from recognition are weighed with expected
graspabilities and whether to terminate early. We show that the
search task can be parameterized to exhibit different behaviors
but cannot be objectively optimized. Evaluation is performed
by analyzing a few scenarios to show the types of behavior
being demonstrated.

I. INTRODUCTION

The problem of optimally searching for objects is funda-
mentally difficult. For example, people often lose common
objects such as keys or remote controls in their house.
Vision clues can signal whether the object might be behind
something in one part of the room. Heuristics might give
likely potential locations for the object. Even though the
person might have ideas for the location of the object in one
room, they could perform an exhaustive search of a single
room only to find it was hidden in plain sight in another
room. While searching a house is time consuming for a
human, searching a table is time consuming for a robot. Since
even the best grasping implementations take upwards of 25
seconds for a single grasp, the robot must search optimally
for it to be of any usefulness in a domestic setting. This is
the problem we attempt to address.

There are numerous challenges for the tabletop search
environment:

o Uncertainty in scene structure

o Uncertainty in goal recognition

« Hidden objects

o Grasping failure

« Possibility the goal is not on the table

e Slow grasping

« Physics

To address some of these challenges, we recognized that
MDPs can capture much of the uncertainty of the problem.
MDPs are stochastic decision making algorithms which can
handle uncertainty in manipulation. POMDPs extend this

framework to include state uncertainty as well. Since the
robot is uncertain about the location of the goal, this infor-
mation can be encoded as a state of the world and POMDPs
can give an optimal policy in the presence of this uncertainty.
We implement two separate approaches to the problem based
on different representations. The first representation uses a
simplistic perception of the world based on dividing an image
into discrete grid cells. The second representation exploits a
precise description of the environment and effectively utilizes
available sensor data. Either algorithm might be applicable
depending on the robot application and the sensors available.
These characteristics are explained in individual sections
describing the representations and algorithms.

The following section describes the Related Work. Section
III motivates the grid-based representation and evaluates it
using the PBVI algorithm. This is followed by Section IV
which describes the obstruction tree based representation and
illustrates how it can be used in realistic scenarios. Finally in
Section V, we provide our concluding remarks and a notes
on future work.

II. RELATED WORK

Work on robotic search and find tasks has been primarily
been on search and rescue task. Search and rescue has been
mentioned as one of the scientific applications of POMDP
in the survey paper by Casandra [3], but POMDP or Q-
MDP is difficult to apply because such approaches would
be highly computationally demanding. This is especially true
for complex environments where the state space is constantly
changing.

Work by Yiming Ye et. al [4] on sensor planning for
object search is related. In their work, the search space is
characterized by the probability distribution of the presence
of the target and the goal is to reliably find the desired object
with minimum effort. However, there are two significant
differences. Their work is on sensor planning and vision for a
particular scene rather than a general search algorithm. Also,
they do not work on scenarios where the goal object might
be hidden. Our work is targeted towards planning the search
and find task for both currently visible and potentially hidden
objects.

The work by Lambert E. Wixson [2] to exploit the world
structure to efficiently search for objects is related to our
use of occluded volume to search for goal objects. Again, it
cannot be directly related or compared because their work
involves sensor planning rather than object manipulation
planning.

Fig. 1. Two cell grid world containing random objects.

III. OCCUPIED GRID CELL STATE
REPRESENTATION

Consider a tabletop scene containing a random set of
objects. We divide this tabletop into grid cells and make note
of the cells which contain objects. We refer to these cells as
“occupied cells”. An example of this representation can be
seen in Figure 1. The world consists of two grid cells and
each cell consists of multiple objects of different size and
color '. Each cell can be in one of 4 configurations. The cell
could be empty, occupied by non-goal objects, contain the
goal object partially occluded, contain the goal object fully
visible. We make use of two camera angles of the scene,
both a front view and a top view. Using the two camera
views allows for objects to stacked along two dimensions
(both length and height wise). On enumerating the possible
combinations we arrive at a state complexity of 2n* where
n is the number of grid cells. But in reality several of these
states can be pruned because we would never encounter
them. For example a state which is empty from the top view
but has the goal in the front view would never be possible
in reality. After pruning we arrive at 36 possible states for a
two-grid world. The advantage of this representation is that
it does not depend explicitly on the number objects in the
scene and the state space does not dynamically change during
the course of action. It thus makes the problem tractable for
computation-heavy algorithms.

In this abstracted space, our task is to find a particular
object of desire 2. We attempt to solve this problem using
POMDP algorithms.

A. Fartially Observable Markov Decision Processes

An POMDP is a tuple (S, A,7T,R,v) with states S,
actions A, observations O, transition functions 7 : S x A —
Pr[S], observation function €2 : S x A — Pr[0], reward
function R : S X A — [Rmin, Rmaz|, and discount factor ~.
The observation function here allows us to mathematically
model uncertainty with respect to the sensors. This informa-
tion allows us to probabilistically estimate which state of the
world we are most likely in. A simplistic example of this is
the game of Blind mans bluff. The player is blindfolded and
he/she must touch the other players. The blindfolded person
is like a POMDP solver, they have no vision and therefore
are never sure of where they are. They move randomly
(actions) and use their sense of touch on their hands and

IThe tabletop can be further discretized depending on the resolution
required

2We take into account the possibility that the object may not be present
on the table

body (observations) to narrow down on where they are most
likely to be. This model therefore appears to fit well in our
search and find scenario.

In a POMDP we maintain a probability distribution over
all possible states and continue to update these values based
on the actions taken and the observations received. Such
a probability distribution is known as a belief state. Given
an initial belief state b(s), then after taking action a and
observing o, the new belief state is updated as -

V(s') = 1Qols,a) 3 T(s'|s, a)b(s) (1)

ses

_ 1
where 1 = Pl 18 normalizing constant with

P(olb,a) = Y Q(ols',a) Y T(s']s,a)b(s) (2)
s'es ses

The POMDP framework has been well studied and it
is notoriously difficult to obtain an exact solution for any
problem. The complexity lies in state space representation
of the POMDP. It is a continuous space with the number of
dimensions equal to the number of states of the underlying
Markov Decision Process (MDP). There is no longer a nice
tabular format for the value function in this continuous space.
There have been several approximate methods proposed both
offline and online [8] and some have been used in real-world
applications. We make use of an offline algorithm - Point-
based Value Iteration algorithm (PBVI) [7] and test its utility
on our grid-based representation. The algorithm samples
belief states from the continuous space and runs random
episodes from these states. It then runs value iteration on the
sampled beliefs to generate a optimal set of alpha vectors
(value function parameters). The algorithm has desirable
properties such as efficiency in value function computation
and optimality with respect to the policy [7]. We test each

of these properties in our domain.
To setup the problem, we define the following specifics -

o State Space - We setup the state space according to the
grid based representation described earlier. We use two
grids cells.

o Actions and Transition Function - Our action space
consists of five actions - remove top most object in cell
1 and the same for cell 2, remove the object closest to
you in cell 1 or in cell 2 and do nothing. The actions
remove the objects from the cluttered scene and place
them in an open uncluttered area. We take into account
stochastic transitions - we allow for each action to fail
%rd of the time.

o Observation Function - Our observations consist of ob-
serving the color of the goal object. These observations
can be made in either camera (front/top) and in either
cell. Enumerating the combinations, we arrive at 17
possible observations. The Observation function defines
the probabilities of receiving each of these observations
in every state. The sum of the probabilities of getting
these observations in a single state is 1.

Front View

Sl Observations
Sensor
Update Belief
Distribution

Top View

A block diagram showing how the different components are

POMDP Value
Function

Optimal
Action

Fig. 2.
connected.

o Reward Function - The aim of our task is to efficiently
find our object or return saying the object is not present
on the table. The reward function for this task must
be setup carefully due to mutual dependence of the
goals. The task of finding a specific object and the task
of clearing a table do not necessarily follow the same
plan. Therefore we setup the function in a manner that
gives maximum reward to finding the object R = 1, a
smaller reward for clearing the table R = 0and R = —1
everywhere else.

o Assumptions - To make the problem tractable for the
PBVI we assume that we know the color of the goal
object we are looking for and that it has a unique color
in the scene.

An initial prior belief state is built by taking into account
the observations (camera data) at time ¢ = (0. We then
perform offline planning. Once algorithm has converged, we
begin to take actions. Figure 2 provides a summary as to
how the different components are connected.

B. Evaluation of POMDP Planner

We first test the efficiency of the PBVI POMDP planner
to compute the optimal value function for the search and
find problem. We incrementally increase the complexity of
the problem (number of states) and note the time taken to
compute for convergence. We use a discount factor of 0.9.
A table of these results can be found in III-B.

Number of States | Time taken in seconds
8 6.50
12 26.66
36 76.93

While the number of states are relatively small, it shows
that the algorithm is reasonably efficiently for our repre-
sentation of the problem. This can be attributed to the
preprocessing steps of the algorithm. The algorithm samples
belief states from the belief space and performs a sequence
of random actions until the episode ends. In this manner, it
evaluates the action space and at the same time is able to
prune the belief space to a set of reachable belief states.

We then tested the policy obtained from PBVI to find goal
objects. For this purpose we setup a simulated version of the
tabletop task in Python. We allowed for random transitions

Front View

Top View

Fig. 3. Simple Simulated Scene. Goal is the partially visible yellow object.

Front View Top View
: -
Fig. 4. Complex Simulated Scene. The goal object cannot be seen in this
scene.

and observations within the simulator in order to replicate
real-world conditions. The goal in all of our test cases is to
find a yellow colored object. An image of a sample simulator
task is shown in Figure 3. It shows two camera views of the
tabletop scene in which the front view has the goal partially
occluded. A more complex scene is shown in Figure 4 where
the goal is not visible any of the camera views.

Given multiple such configurations, we executed the
POMDP policy to obtain the goal. A summary of the results
obtained is shown in Figure 5. We find that the PBVI
algorithm is able to achieve the goal object in all the test
cases. The numbers are slight greater than the Optimal due
to stochastic transitions and observations encoded within the
simulator. The stochasticity temporarily diverts the weight of
the belief space to another location but as more actions are
taken and observations are received, it eventually continues
to find the goal object. This is due to inherent Markov prop-
erty of the belief state. At any point in time, it encodes all
the past history of actions taken and observations received.

The PBVI algorithm used on the grid representation was
found to be efficient in computing the value function. The
policy was optimal in terms of the sensor and actuator
imprecision. The algorithm in itself is complete, however
the execution of the policy is dependent on characteristics
of the real-world as it true for any algorithm. The worst
case performance of the algorithm is when it removes all
the objects incrementally one by one until there is nothing
left on the table.

Given the above results, we find that we are able to
efficiently solve simple problems where there are only two
occupied grid cells. However there is significant amount of
information that we are not yet utilizing in our representation.
In the real world we would like to use more information to
further direct our search. These can be elaborated as -

o The grid representation flattens out the world and does

Testing the Policy

N
Ul

=N
u o
iy

N

—Random
—PBVI
Optimal

o

Number of steps taken
=
o
&\u

Test cases

Fig. 5. Comparison on Test Cases.

not take into account the connectedness of the objects.
By taking into account how one object is connected
to another, we could make intelligent decisions when
searching for an object.

e Our assumption that there can be no multiple goal col-
ored objects is not realistic. We are likely to see tables
with similarly colored objects. We could incorporate
higher resolution spaces.

o Our action space is quite simplistic. We can advance
only one step at time by removing only a single object.
We limit them to make the representation tractable for
the POMDP algorithm.

e We could take into account the fact that an action
may fail stochastically and this may change the world
(position of objects on the table). In this case we
could replan (using a faster algorithm) given the current
configuration of objects. This would not be possible
using PBVL

e« We could bias the search by including more sensor
data based on occluded volume, object recognition,
graspability and so on. Combining this data with the
PBVI makes it computationally expensive.

The PBVI algorithm with grid representations showed
us that we could solve simple problems efficiently. We
performed a test by increasing the number of observations,
expanding the action space and increasing the state space.
On this refined space we performed PBVI to compute the
value function. We note the taken taken grows to a very
large amount. Therefore as we incorporate the characteristics
mentioned above, the complexity of the space and hence
the algorithm grows to a large extent. It is clear that we
are not utilizing significant data because of our assumptions
and simplistic state representation. Using the results we
obtained here we further expand on our representation to
a tree based approach. To make the planning tractable in
this representation, we use an MDP approximation of the
POMDP known as QMDP.

IV. OBSTRUCTION TREE BASED
REPRESENTATION

The grid-based state representation has a fundamentally
simplistic concept of the possible states of the world which

restricts the amount of inference that can be made into
the results of the robot’s actions. However, if computer
vision is able to provide a more complex description of
the tabletop object relationships, more informed decisions
can be made about the optimal object to grasp. Our more
precise state representation, Obstruction Tree-based, assumes
that vision is able to segment the objects from each other
and determine which objects are obstructing others. Though
the specific algorithm is outside the scope of this paper,
following is a short description of how this relationship
can be computed. Suppose a color image and a segmented
3D point cloud is available to the robot which represents
the different objects on the table. For each object we want
to find whether any other object is occluding this object.
First, take the point cloud clusters, project them onto the
image, and find the minimum distance between points of
each cluster. If this distance falls beneath a threshold, there
is an occlusion boundary between these two objects. If the
two closest points in projected space have a distance above a
threshold in unprojected space, the object further away is the
object being occluded. If the points are very close, such as
in the case of one object resting on another, points around
the occlusion boundary can be sampled to find out which
object is on top. Once an occlusion relationship <,. can
be determined between every pair of objects, the obstruction
relation <,ps is generated from its transitive closure, along
with a nothing element that obstructs everything. An object
o; is obstructed obs(o;) when Jojlo; <ops 05,7 # j,0; F
nothing. An Obstruction Tree is the tree which represents
the relationships between all of the objects in the scene. For
each visible object, a potential object is added to the tree to
represent the possibility that one object is behind each visible
one. Potential objects cannot be grasped, but they must be
considered as possible goals.

% Nothing
01 02 l Is obstructing
. Object
&04 0Os A\ Os| /\potential Object
/\ Os
Fig. 6. A Sample Obstruction Tree

A. Table States and Actions

Once the initial obstruction tree is determined, future
obstruction trees can be predicted in the case of a successful
grasp. Trees are generated for all possible combinations of
removing any number of visible objects in no order. The
possible actions for each tree configuration include grasping
any visible object, grasping one of the unobstructed objects
and returning it as the goal, and quitting the search. Allowing
the robot to quit the search is a feature which is essential

in a multi-table task. If the robot is a mobile manipulator
searching multiple tables for a goal object, it should stop
searching once its confidence about the goal being off the
table is high enough. Though an obstruction tree encodes the
structure of the table, a full state also includes the identity
of the goal object, or that none are the goal object. Thus, the
set of all possible table states is the Cartesian product of the
obstruction trees with the goal location labels. Actions only
connect obstruction trees within each possible goal location
”world™”.

Failure C1

/C;l’\
o A

Fig. 7. The first future obstruction trees with connecting grasping
actions. Each red arrow pair represents a grasp of that object with both
its consequences.

: A

A

'
2N

Cs

Fig. 8. The enumerated obstruction trees for the three object world.

It is important for the agent to understand whether or not
an object is obstructed and in what conditions the object
is unobstructed because graspability will change once the
object is uncovered. Graspability is a probabilistic measure
of how likely the robot will successfully grasp the object. For
example, for some grasping implementations, larger objects

C1 C2 C3 C4 Cs Ce C7 Cs

is_goal(O1) | S1 S2 S3 S4 Ss Se S7 Ss
is_goal(O2) | Se St ...
is_goal(03)
is_goal(O4)
is_goal(Os)

is_goal(Oe)

off_table

Fig. 9. A grid representing the all of the possible table states for the three
object world.

are more difficult. If a vision algorithm is available to predict
graspability for the objects on the scene, the robot can plan to
avoid grasps which are more difficult. Ideally, an algorithm
should produce the current graspability of unobstructed ob-
jects and for obstructed, both when the object is obstructed
and the predicted value when it is unobstructed. A non-zero
graspability for obstructed objects indicates that the robot is
welcome to attempt to grasp objects behind or underneath
others if it deems uncovering the object first more costly.
The graspability value is used as the transition function for
the actions on each tree configuration from before. In case of
a failure, it naively expects the state to remain unchanged. A
more complex function is difficult to use because the actual
result of a grasping action is highly unpredictable for robots.

B. Belief Distribution

This representation also allows for the incorporation of
recognition probabilities and potential object discoveries to
form a belief distribution over which goal location ”‘world™”’
the robot is in. Suppose a vision algorithm is available
which provides, instead of a binary true or false recognition
observation, a heuristic that estimates the probability that
this object matches goal. Also assume that the heuristic can
also be applied to partially occluded objects. Using these
probabilities will both give the robot a good hypothesis about
the location of the goal, and provide confidence confirmation
once the suspected object has been uncovered. If the vision
has low confidence even when the goal object is uncovered, it
might want to consider whether further exploration is worth
increasing its belief of the currently most likely goal.

Even when the goal object is completely occluded, in-
ference can be made about its location. Since the robot is
looking for something it can recognize, we can expect the
volume of the object can be easily estimated. For a tabletop
scene with a robot looking over, the only possible places in
which the goal is fully occluded is in the volume formed
by the projection of the visible surface of those objects onto
the table. If the occluded volume is large with respect to the
goal, the possibility the potential object behind the visible
is the goal increases. An simple estimate for the probability

that the goal is behind an object is given by

) . vol(goal)
P : L 0i)) = 1 LoRgoat)
r(isgoal(o;)|behind(o0;, 0;)) = awmax(0, occvol(or)

3)

where 0 < o < 1 is a constant that represents the general
likelihood of any object being fully occluded along with the
probability that such an object has similar volume to the
goal.

Using these goal probabilities we create a belief about the
identity of the goal, a probability distribution over all visible
objects, every potential object behind the visible ones, and
the possibility it is not on the table. One useful assumption to
make is that there is only one goal on the table. In this case,
the belief can crafted to represent the exclusive probability
that one object is the goal and every other object is not the
goal. Since the recognition and full occlusion probabilites
from before should be independent, the joint probability can
be broken up.

b(isgoal,(0;)) =Pr(isgoal(o;) A ﬂ —isgoal(0;£;)) 4)
J

= Pr(isgoal(0;)) * H 1 — Pr(isgoal(0;+;))

J
(&)

Finally, the possibility the goal is not on the table is com-
puted as

b(offtable) = H 1 — Pr(isgoal(o;)) (6)

Once the belief values are computed, they are normalized to
sum up to 1. This implementation assumes full observability
over obstruction trees but partial observability over goal
locations. The total belief over all of the states in the set
described in the previous section will be non-zero for all
other tree configurations.

C1 C2 C3 C4 Cs Ce C7 Cs

is_goal(O1) | 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

is_goal(0z) 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0

is_goal(0s) 0.0 0.0 0.2.0.0 0.0 0.0 0.0 0.0

is_goal(Os) 0.0 0.0 0.4 0.0 0.0 0.0 0.0 0.0

is_goal(0s) 0.0 0.0 0.10.0 0.0 0.0 0.0 0.0

is_goal(Os) 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0

off_table

Fig. 10. The full belief over all the possible table states.

C. Obstruction Tree Planner: Q-MDP

Though this representation can be implemented as a
POMDP, an offline policy cannot be generated because
replanning is required at every step. When the robot fails
a grasp, the resulting disturbances, collisions and physics
make the following tree configuration difficult to predict.

Furthermore, even if the grasp is successful, a complex sub-
configuration could be revealed behind the object. General
POMDP’s, as shown by our previous work, can take minutes
or hours to compute a policy. Since a timeframe longer than a
few seconds is unacceptable, for this task, a Q-MDP planner
is used to quickly estimate a POMDP [1]. The planner works
by simply assuming only one step of uncertainty and not
trying to explicitly predict what the belief distribution will
look like at each step. Specifically, for each goal location,
MDP value iteration is performed assuming that this goal is
the actual goal. For each of the current actions, the Q-value
is computed using the V-values from value iteration.

Qupp(a,s) =Rq(s,s") + Z Pr(s, s")Waupp(s') (1)

s/

a* = argmax Z b(s)Qrnpp(s,a))

There are four parameters to the planner which must be set
based on the type of behavior the user would like the robot
to exhibit. These parameters form the reward functions of
the underlying MDP and include a reward for grasping and
returning the goal object, a cost for executing a grasp, a
penalty for returning the wrong object, and a penalty for
quitting to say the object is not on the table. First, the goal
reward should be set to some positive value. The precise
value is unimportant because it is relative rewards which
change the actions. Next, the cost of every grasp action
should be set to reflect the amount of time an average grasp
takes. If the grasp cost to goal reward ration is very high,
the planner will try to exit as soon as possible and report
that there is no object on the table. If set very low, the robot
will temporarily pass over the goal, looking for objects in
every location until the certainty of the belief state is at
a maximum. The most useful setting is somewhere in the
middle of these extremums. There is also a cost assigned to
returning the incorrect object. A high incorrect object cost
to correct object reward ratio will not terminate if there are
other significant goal beliefs. A low ratio will go for the
easiest significant belief and return it, regardless of whether
it is even the maximum belief state. Again, this must be
tuned for desired effect. Cost is also assigned to quitting the
table, a suggestion as to how many more grasps is worth
looking for the object if it probably is no on the table. A
fifth optional parameter could be to assign differential costs
to grasping each of the objects based on task constraints such
as expected fragility. Though a larger penalty with respect to
the other objects could still result in the object being moved,
it will try to avoid the object if reasonable.

D. Evaluation of Q-MDP Planner

When assessing the optimality of this approach, it should
be recognized that, as discussed in the previous section,
the behavior of the robot is highly dependent on what is
important to the user, the quality of the vision algorithms.
For each set of parameters, Q-MDP finds approximately
optimal policies given that future belief states cannot be
faithfully predicted. The existence of these tradeoffs provides

insight into the general task of searching for an object on a
table. If the vision system provided is imperfect, there is
no objectively optimal solution to this problem. In addition,
if time is an important constraint for the user, the task of
finding the goal will not be complete and might quit before
actually finding the goal. Also, even if the vision is imperfect
and the objective is to find the most likely goal object, under
certain parameters the planner will be unsound and can return
the less likely of two goals. While these tradeoffs seem
costly, the gain is far more important in a robot mainpulation
environment, reducing the amount of time spent at the table.

Since both the parameters of the algorithm and the proba-
bilities recieved from the world are highly nondeterministic,
it is unrealistic to perform empirical trial testing with respect
to the grid implementation or some other implementation.
Instead, scenarios which demonstrate desirable behavior will
be described. For these scenarios, yellow designates the goal
object and the robot’s vision is from the directly above
perspective.

Fig. 11. A table setup with a goal (yellow) that has a low but significant
recognition value. Both blue and green are easy to grasp, red is harder.

One capability the planner gives is the ability to ac-
commodate weak recognition values. This means the robot
should return the object only after it is confident that other
possible objects are not the goal. For the table in figure 11,
the green block is first removed because it is easier than
the blue or red, and the robot sees the unobstructed goal.
While the recognition value is significant, it is not high
(Pr(isgoal(0;)) = 0.5). Since the blue object is occluding a
lot of volume, the robot decides it should look under the blue
block next. There, it sees the brown object but recognizes it
with a low value. Having decreased its uncertainty, the robot
now returns with the goal object. This plan is considered
optimal because the brown object could have just as easily
been the goal with a higher recognition probability. Under
the same scenario, a higher recognition value will have the
robot return the object immediately after uncovering it. A
lower recognition value will prompt the robot to look under
the red object as well, despite it being hard to pick up.

This planner can also handle multiple goal possibilities.
In figure 12, the left yellow object is the actual goal and the
right object is a decoy that looks like the goal when partially
occluded. While the left object is marginally more likely
the goal, the red object is more significantly more difficult
to pickup than the black object. Thus, the robot decides to

Fig. 12. A table setup with both a goal (left yellow) and a decoy (right
yellow). Red is difficult to grasp and black is easy.

pickup the black object first and inspect the decoy. Once
it realizes it is not the goal, it continues by lifting the red
object followed by the blue and returning the goal. Again,
this is optimal because the algorithm should favor good leads
weighted by their ease.

Fig. 13. A table setup where the goal (yellow) has a small but significant
current graspability. The other objects have somewhat high graspabilities.

The planner can also pull out objects from underneath
stacks if the graspability is high enough. For figure 13,
the algorithm immediately removes the goal object, then
recognizes it and returns it.

The significance of the Obstruction Tree-based represen-
tation is its ability to incorporate all of the above capabilities
into a single framework. Though any one of the behaviors
could be manually added into a naive approach, this planner
can handle all these problems continuously and concurrently.

Since speed is a priority for this algorithm and re-planning
is done at every step, planning must be fast. Specifically,
it must run in less than 10 seconds and ideally less than 3
seconds for it to be beneficial for real-world applications. The
number of states in the underlying MDP is O(N2") where
N is the number of visible objects. In basic implementation,
value iteration will run /V times in a state space of that size.
Empirical testing shows that the planning becomes costly
for N > 7 (3.5 seconds for N = 7, 10 seconds for N = 8).
There are a few modifications that can be made to reduce
running time without compromising optimality greatly. When
belief about the location of the object is low, the Q-values
and consequently V-values for those beliefs do not need to be
calculated because they will drop out. Our first modification
pruned the number of value iterations to the top 7 beliefs.
This proved to have only modest improvements, shifting the
running time numbers up one object (3 seconds for N = 8§,

10 seconds for N = 9). Decreasing the discount value also
trimmed about a second off the costs, but clearly sub-optimal
policies were apparent for v < 0.99. It is clear that the barrier
to faster computation is the large number of states for the
MDP. Though there are methods for prioritized state pruning,
they have not been implemented.

V. CONCLUSIONS AND FUTURE WORK
A. Conclusions

On reviewing the results, we find the quality of the policy
obtained to be closely tied with the representation and the
algorithm used on top of that. The grid-based representation
was primarily a flattened world with limited capabilities.
It was tractable for computationally expensive POMDP al-
gorithms and was able to solve simple problems. However
when incorporating additional sensory information into the
state space, the algorithm ceases to be efficient. To overcome
this, we defined a new representation, obstruction tree-based
and combine it with a POMDP approximation, the Q-MDP.
We find that it is able to leverage multiple capabilities of
the robot, uncertainties in the environment, and at the same
time, perform dynamically based in a changing environment.
We also note that since the representations and expected
observations are different, they are not directly comparable.

B. Future Work

There are a few improvements to the Obstruction Tree
representation to make the robot more capable. As mentioned
earlier, prioritized value iteration can be implemented to
decrease running times and increase the number of objects
the robot can feasibly reason on. Currently, the Obstruction
Tree-based representation only allows for grasp-and-place
actions to change the structure of the world. While grasping
is often difficult for a robot, pushing is much easier. Allowing
the robot to push objects out of the way or topple stacks
can give the robot a more reliable way of uncovering
goals. Also, the representation assumes that there is always
open space available to place removed objects. Realistically,
in a cluttered environment, open space is limited. Adding
constraints into the planner will make the algorithm more
robust.

Real-world implementation is also a priority for future
development. Obstruction Tree planning assumes certain
vision algorithms are available to the robot for generating
input. Implementing some of these algorithms will allow us
to discern whether and which vision assumptions are realistic
and discuss solutions and the effects on the performance
of the planner. With working vision algorithms, we hope
to implement our work on Willow Garage’s PR2 Personal
Robot for realistic evaluation. The results of testing with an
actual robot will be both more relevant and will capture the
actual effects of failures in vision and grasping.

REFERENCES

[1] M. Littman, A. Cassandra, and L. Kaelbling, "Learning policies
for partially observable environments: Scaling up (1995)”, Machine
Learning: Proceedings of the Twelfth International Conference, Tahoe
City, CA, 1995, pp. 362-70.

[2]
[3]
[4]
[5]
[6]

[7]

[8]

Lambert E. Wixson, “Exploiting World Structure to Efficiently Search
for Objects”, Technical Report 434, Dept. Comp. Sci, Univ. of
Rochester, 1992.

Anthony R. Cassandra, ”A Survey of POMDP Applications”

Yiming Ye and John K. Tsotsos, ”Sensor planning for 3D object
search”, Comput. Vis. Image Underst., February 1999.

H. Kwakernaak and R. Sivan, Modern Signals and Systems, Prentice
Hall, Englewood Cliffs, NJ; 1991.

D. Boley and R. Maier, A Parallel QR Algorithm for the Non-
Symmetric Eigenvalue Algorithm”, in Third SIAM Conference on
Applied Linear Algebra, Madison, WI, 1988, pp. A20.

Joelle Pineau and Geoffrey J. Gordon and Sebastian Thrun, “Point-
based value iteration: An anytime algorithm for POMDPs”, in IJCAI
2003.

Stephane Ross and Joelle Pineau and Sebastien Paquet and Brahim
Chaib-draa, ”Online Planning Algorithms for POMDPs”, Journal of
Artif. Intell. Res. (JAIR), vol 32, year 2008.

