
HELP - HUMAN ASSISTED EFFICIENT LEARNING
PROTOCOLS

BY KAUSHIK SUBRAMANIAN

A thesis submitted to the

Graduate School—New Brunswick

Rutgers, The State University of New Jersey

in partial fulfillment of the requirements

for the degree of

Master of Science

Graduate Program in Electrical and Computer Engineering

Written under the direction of

Prof. Zoran Gajic

and approved by

New Brunswick, New Jersey

October, 2010



c© 2010

Kaushik Subramanian

ALL RIGHTS RESERVED



ABSTRACT OF THE THESIS

HELP - Human assisted Efficient Learning Protocols

by Kaushik Subramanian

Thesis Director: Prof. Zoran Gajic

In recent years, there has been a growing attention towards the development of artifi-

cial agents that can naturally communicate and interact with humans. The focus has

primarily been on creating systems that have the ability to unify advanced learning al-

gorithms along with various natural forms of human interaction (like providing advice,

guidance, motivation, punishment, etc). However, despite the progress made, interac-

tive systems are still directed towards researchers and scientists and consequently the

everyday human is unable to exploit the potential of these systems. Another undesir-

able component is that in most cases, the interacting human is required to communicate

with the artificial agent a large number of times, making the human often fatigued. In

order to improve these systems, this thesis extends prior work and introduces novel

approaches via Human-assisted Efficient Learning Protocols (HELP).

Three case studies are presented that detail distinct aspects of HELP - a) represen-

tation of the task to be learned and its associated constraints, b) the efficiency of the

learning algorithm used by the artificial agent and c) the unexplored “natural” modes

of human interaction. The case studies will show how an artificial agent is able to

efficiently learn and perform complex tasks using only a limited number of interactions

with a human. Each of these studies involves humans subjects interacting with a real

robot and/or simulated agent to learn a particular task. The focus of HELP is to show
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that a machine can learn better from humans if it is given the ability to take advantage

of the knowledge provided by interacting with a human partner or teacher.
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Chapter 1

Introduction

We have always imagined that one day robots would live among us and learn to adapt

and behave in a manner similar to humans. This use of robots in everyday human envi-

ronments has long been a goal for researchers and scientists all over the world. In order

for this dream to be realized, robots must be able to interact, cooperate and coexist

with humans. At present there are several academic groups that are actively at work

towards this goal. For example, using robots to aid humans in household activities, to

work alongside doctors and perform precise surgical operations, to assist astronauts in

space. In each of the examples mentioned, it is the elements of human-robot interaction

that have played a pivotal role for their success. In more specific terms, it is the ability

of a robot to effectively interact and learn from a human that has lead to the successful

application of robots in everyday human environments. This form of communication

(human and robot) helps alleviate several of the problems faced by autonomous agents

in similar task environments. For example, in this ever-changing world, autonomous

agents must consistently and reliably adapt their behavior to achieve reasonable per-

formance levels. In effect, their response time should match the rate of change of the

nature of the environment in which they are acting. A key problem that is often faced

with human-robot interaction protocols is that the underlying learning technique (used

by the artificial agent) has not been designed for learning from non-expert users. This

research is based on the belief that machines, designed to interact with people, should

use behaviors that are relevant to the way in which humans naturally interact. This

ability to utilize human knowledge will serve as a good interface for people as well as

have a positive impact on the underlying learning mechanism.

This thesis discusses about Human-assisted Efficient Learning Protocols (HELP),
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examining ways in which learning algorithms can efficiently utilize the knowledge that

humans can provide. The features of HELP are highlighted in three case studies, in-

volving human subjects, dealing with Supervised Learning and Reinforcement Learning

(RL) algorithms. In each of the studies, software/robotic implementations and experi-

ments are used to explore and validate the advantages of HELP. This work demonstrates

the performance benefits of integrating human interactions with the learning process.

In this chapter, we will begin by motivating the need for human guidance in robot

learning tasks, then provide a brief summary on the current models used for human

learning and for human-robot interactions.

1.1 The Need for Human Guidance

In order to motivate the need for human guidance, let us briefly outline the approaches

that researchers have taken in bringing artificial agents and humans together. In the

1940s Grey Walter, as described in Holland (2003), built a robot capable of interacting

with another in a seemingly “social” manner, although there was no explicit commu-

nication or mutual recognition between them. Some years later, Beckers et al. (1994)

pioneered the first experiments on stigmergy (an indirect communication protocol be-

tween individuals via modifications made to the shared environment) in simulated and

physical “ant-like robots”. Following these works and many others, there has been a

continued interest in this field and research has advanced a great deal over the decades.

The most recent work has been done by Cynthia Breazeal and Andrea Thomaz. They

introduced a framework known as Socially Guided Machine Learning [Breazeal and

Thomaz (2008); Thomaz et al. (2006)] that is aimed at designing robots that learn by

taking advantage of the social protocols with which humans interact with one another.

Such robots are referred to as social robots and they have a wide range of applications

in toys, as educational tools, as industry assistants, aid in surgical operations etc. A

survey of the current applications of such robots is given in Fong et al. (2003) where

Fong et al. analyze the aspects that need to be taken into account when designing a

social robot.
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Let us try to understand further what is it that humans expect robots to learn

through their interactions. Consider the example of a humanoid robot that has been

assigned the role of a household assistant. The robot must understand human social

protocols, it must understand speech commands and extrapolate the intended emotions,

the robot must remember, adapt and learn to perform new tasks, the robot should per-

ceive the surroundings almost as well as humans, etc. This provides a broad perspective

of some of the expected outcomes of human-robot interactions. Humans through the

means of advice, guidance, motivation and correction can help the robots efficiently ex-

plore the world, adapt to dynamic environments, learn to perform new tasks, perceive

the world in manner suitable for human interaction and so on. This research focuses

on the efficient utilization of human task knowledge to enhance the learning process of

an artificial agent.

1.2 Survey of Learning Methods and Modes of Human Interactions

In this section we briefly overview computational models that describe human learning,

the role of humans in standard machine learning algorithms and a survey on the current

machine learning approaches suited for human inputs.

1.2.1 Models of Human Learning

A child typically says its first words and takes its first steps in about a year after birth.

It is quite remarkable that just by the age of five, a child can understand spoken lan-

guage, distinguish a cat from a dog, and play a game of catch. Clearly the human child

is the best learning system on the planet. Charles Kemp [Kemp et al. (2007)] explains

that the key advantages of human learning are that it is guided by rich prior knowledge,

takes place at multiple levels of abstraction, and allows structured representations to be

acquired. Researchers are currently focusing on accurately building on such models of

human learning so that they can be extended to Machine Learning domains. Machine

Learning is a field that focuses on the ability to make artificial agents/machines effi-

ciently learn to performs tasks in this complex and noisy world. It has been explained
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in more detail in the next section.

Michael J. Pazzani [Pazzani (1994)] also believed that human learners are the closest

approximations to general purpose learning machines that are available for study. He

analyzed computational models by which people can acquire new skills without interfer-

ing with existing skills, can learn from incomplete and contradictory information, can

use existing knowledge to aid the learning process, can learn in the absence of relevant

background knowledge, can learn from complex, high dimensional visual and auditory

data, etc.

In order to understand human learning models, a vast majority of research has been

done by studying how children learn from a very young age. Some of the early work in

this field include (also discussed in Pazzani (1994)) -

• Jones and VanLehn (1991) investigate a model that accounts for data on how

young children learn to add.

• Kazman (1991) proposes a model of the child acquiring lexical and syntactic

knowledge by being exposed to samples of adult’s language usage.

• Martin and Billman (1991) investigate how a learner may acquire overlapping

concepts from unsupervised or unlabeled data.

• Seifert et al. (1994) propose a model of how experiences are stored in memory so

that they may be retrieved in appropriate situations.

• Shultz et al. (1994) explore how children learn to predict what will occur when

weights are placed on a balance scale.

At this point, we ask ourselves, can machine learning algorithms help explain human

learning? It has long been understood that the theories and algorithms from machine

learning are relevant to understanding aspects of human learning. The vice-versa also

holds true. Human cognition also carries potential lessons for machine learning research,

since people still learn languages, concepts, and causal relationships from far less data

than any automated system. There is a rich opportunity to develop a general theory

of learning which covers both machines and humans, with the potential to deepen
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our understanding of human cognition and to take insights from human learning to

improve machine learning systems. Several machine learning algorithms have been built

around human models of learning, including neural networks, case-based reasoning,

probabilistic models and statistical induction. We now discuss approaches that combine

the human learning system with a machine learner.

1.2.2 Machine Learning with a Human

Machine Learning has evolved from the broad field of Artificial Intelligence, which aims

to mimic the intelligent abilities of humans by machines. In the field of Machine Learn-

ing one considers the important question of how to enable machines to “learn”. Machine

Learning can be divided into three categories, namely Supervised, Unsupervised and

Reinforcement Learning. In supervised learning, there is a label associated with an

example from a data-set. The label is supposed to be the “answer” to a question about

the example. If the label is discrete, then the task is called a classification problem oth-

erwise, for real-valued labels it is a regression problem. In unsupervised learning, the

task is to uncover hidden regularities (e.g. clusters) or to detect anomalies in the data.

In reinforcement learning, a task is characterized by a reward function and the agent

must learn to act in the world such that it maximizes the cumulative reward received.

Further details about some of these approaches are provided in the case studies.

There has been great success for standard machine learning techniques in a wide va-

riety of applications. It has been applied to several hard problems that involve learning

in real-time in environments that are continuous, stochastic and partially observable

[Thrun and Mitchell (1995); Mataric (1997)]. In typical situations machine learning

has not been designed for learning from a human teacher, but in some way or the other

a human is part of the learning process. The traditional role of the human operator

in machine learning problems is that of a batch labeler or task encoder, whose work

in some cases is done before the learning even begins. In other cases, the human is

interacting directly with the learning algorithm as it learns. Frequent problem scenar-

ios which fall into this space include active learning, interactive clustering, query by

selection, learning to rank, and others. Human designers are used to create successful
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learning systems in the following manner:

• Build the data set on which Machine Learning is performed -

The designer must collect training and testing data that is representative of the

specific task. The quality and quantity of the data will determine the accuracy

and the generalization characteristics of the resulting system.

• Provide Labels -

Some methods of supervised learning like active learning, case based reasoning,

inductive learning and so on require inputs from the human during training, in

the form of labels and feedback. Providing these true labels allows the underlying

algorithm to learn the characteristics of the data that are common to similarly

labeled examples and this way it is able to generalize.

• Construct Features and Algorithm Parameters -

The designer is often given the task of constructing features that can be utilized

by learning algorithms. In supervised learning, the human uses his/her prior

knowledge about the data and appropriately chooses features that will help in the

classification. In reinforcement learning, feature selection has a great impact on

how the agent will model the environment. Humans go through several iterations

of testing various algorithm parameters, in search for the optimal set that yields

the most accurate results. These parameters more often than not have to be

tuned every time depending on the type of problem.

• Stopping Criterion -

For a majority of the learning algorithms, there is no well defined point that

indicates when learning should stop. In most cases, the designer decides that

learning should stop when the performance of the algorithm, from his/her opinion,

is “good enough”.

• Define a Reward Function -
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In reinforcement learning problems, it is necessary for the designer to characterize

the task by defining a reward function. This function encodes the task in the form

of calculated rewards given to the learning agent. Without this function, the agent

does not have a way to identify what the task is. It therefore necessitates that a

human, who knows the task, explicitly defines a reward function.

Clearly the learning process is not currently feasible for non-experts. The aim of

HELP is to bridge this gap and enable machine learning systems to succeed at learning

via interaction with everyday people.

1.2.3 Current Approaches Tailored for Human Input

For years scientists and researchers working on robotic and software agents have been

inspired by the idea of efficiently transferring knowledge about tasks or skills from a

human to a machine. There are several related works that explicitly incorporate human

input to a machine learning process. It is important to note that most of these works

did not employ the use of everyday trainers. Nonetheless a review of the methods would

help understand how human input has been utilized.

1.2.3.1 By observing human behavior

The human through an appropriate interface communicates the task to the learning

agent by “showing” it. The agent then utilizes this information and generalizes to

understand the specifics of the task. The complexity of the task, the transfer of human

behavior and the choice of learning algorithm effect the ability for the agent learn. A

few techniques are described below:

• Learning by Demonstration

It is an extensive field of research focused on teaching an artificial agent behaviors

and skills without extensive programming (e.g. a humanoid robot learning object

manipulation tasks). At a high level, a human, playing the role of the teacher,

has the task of effectively communicating the required behavior to the artificial

learning agent through various methods of interaction It eliminates the need for
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the designer to hard-code complex tasks which may vary depending on the ap-

plication and the environment. A survey of the current methods of Learning by

Demonstration can be found in [Argall et al. (2009)].

• Imitation Learning

Imitation Learning [Mataric (1997); Nicolescu and Mataric (2001)] has often been

used interchangeably with Learning by Demonstration. While this is not far from

the reality, in the strictest sense of its meaning, Imitation Learning refers to the

form of learning where an agent “observes” the teacher perform the task and uses

that information to imitate the teacher. The quality of learning is purely based on

the faithfulness of the reproduction of the action which has been demonstrated.

It has been applied to several domains including development of fine robot motor

control primitives [Pastor et al. (2009)], smooth robot walking gaits [Chalodhorn

et al. (2007)], identifying object shapes [Montesano et al. (2008)], etc.

Recent work in Imitation Learning [Ratliff et al. (2006)] took instances of a Markov

Decision Process and demonstrations and tried to generalize these demonstrations

based on assumptions about the linearity of costs with respect to the feature space.

Such a task is considered as an inverse control problem (also known as Inverse

Optimal Control).

• Inverse Reinforcement Learning (IRL)

In a tradition RL setting [Sutton and Barto (1998)], the agent acts in the real-

world by choosing actions that maximize its overall average reward. Here the

reward function has to be manually designed by the user and this may vary de-

pending on the application and it is also an arduous task for a non-technical user.

To alleviate this problem, several researchers [Ng and Russell (2000); Ramachan-

dran and Amir (2007); Ziebart et al. (2008); Lopes et al. (2009)] have developed

algorithms that come under the category of IRL. In this setting, numerous exam-

ples of the task are given in the beginning (possibly in the form of demonstrations)

along with the transition function (model of the environment). The agent uses

these examples to automatically calculate the reward function of the expert. The
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agent, with given transition function and the computed reward function, can plan

and execute the required task.

• Apprenticeship Learning

This form of learning has been worked on by several researchers [Abbeel and

Ng (2004, 2005); Syed et al. (2008); Neu (2007)] and it is sometimes used in

conjunction with IRL. The focus in Apprenticeship Learning is that the agent is

trying compute the optimal policy by learning the transition function, given a set

of features that define the world. In some cases, the reward function is learned

as an intermediate step. It uses a set of examples provided by the expert in the

beginning and then computes the optimal policy that matches the behavior of the

expert. An application of this protocol is the Inverted Helicopter [Abbeel and Ng

(2005)].

1.2.3.2 Providing labels and feedback

In other cases the human influences the experience of the machine with a set of higher

level constructs, for example, providing feedback to a reinforcement learner or labels to

an active learning system.

• Active Learning

Active learning or learning with queries is a semi-supervised learning approach

that utilizes a human “oracle” through queries [Schohn and Cohn (2000)]. An

unsupervised learning algorithm identifies the most interesting examples, and

then asks the oracle for labels. Thus, the algorithm is in control of the interaction

without regard of what an ordinary human will be able to provide in a real

scenario.

• Socially Guided Machine Learning

This method explores ways in which human can teach agents using their natural

social means of communication. In order to learn a particular task, the human

trainer provides reinforcement, guidance, advice, motivation and other such social
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protocols that are intermediately decoded to an agent understandable language

and then utilized by it to generalize and learn the task. This method has been

recently developed [Breazeal and Thomaz (2008); Thomaz et al. (2006)] and has

been successfully applied to robotic domains in real-time.

• TAMER

The TAMER Framework, Training an Agent Manually via Evaluative Reinforce-

ment [Knox and Stone (2009)], seeks to transfer knowledge from the human to

the agent through the means of human reinforcement. A human watches agent

act in the world and has access to an interface that provides the agent feedback

about its actions (negative or positive). This way, the agent learns the reward

function of the human, extrapolates it to unseen states and accordingly modifies

its policy in an attempt to satisfy the human’s reward function. The framework

has been successfully employed in teaching an agent to play a game of Tetris and

solving the mountain car.

• Robotic Clicker Training

It is based on a method that is commonly used for animal training. In this method

a human provides feedback to robot through the means of a clicker. The clicker

serves as an instrument of reinforcement. Clicker Training involves two kinds of

reinforcement, the first one communicates to the agent that the current action

is an important one (brings attention), the second reinforcement is given when

the action has been completed in the desired manner. It has been used to learn

complex tasks with the Sony Aibo robot [Kaplan et al. (2002)].

• Cobot - A Social Reinforcement Learning Agent

It is a software agent that lives in an active online community called LambdaMOO.

The goal of the agent is to interact with other members of the community and to

become a real part of the social world. Cobot is allowed to take proactive actions

in the social environment, and adapt behavior based on feedback from multiple

sources. The agent builds models of those around it, based on statistics of who
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performs what actions, and on whom they use them. It was shown [Jr. et al.

(2001, 2006)] that Cobot learned nontrivial preferences for a number of users and

learned to modify his behavior based on his current activity of other users.

1.3 Thesis Overview

This Thesis describes three novel case studies, each one detailing distinct aspects of

HELP. The first study acts to set a base line by describing a standard human robot

interaction experiment. It describes how the task to be learned is represented and the

constraints associated with it. The studies that follow will build upon the pervious

work and enhance the learning accuracy by a) modifying the structure of the learning

algorithm and b) modifying the mode of human interaction for efficient learning.

Chapter 2 describes a case study where a human interacts with a humanoid robot

and teaches it to perform a set of tasks by using supervised learning algorithms. The

study details the task representation, the choice of learning algorithm, the mode of

human interaction and finally the effectiveness of the interaction. Chapter 3, the second

case study, explores the interactions of a human with novel reinforcement learning

algorithm. This approach focuses on the characteristics of the algorithm and how

it makes use of the human inputs. Chapter 4, the final case study, investigates how

standard reinforcement learning algorithms perform when given different forms of input

from the human trainer. It describes the aspects of the task that humans understand,

the information that they are ready to provide and the performance of the learning

algorithm using each of these inputs. Chapter 5 provides a summary of the three case

studies, the challenges with human guided systems, some concluding remarks and future

work. Each of the case studies involves human subjects interacting with the learning

algorithm either through a robot or an equivalent software implementation.
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Chapter 2

Experiments in HELP

This chapter details three case studies focusing on the different aspects of human in-

teractions with learning protocols. The first case study describes a framework where

a human uses kinesthetic means (direct control of a robot’s actuators) to teach a task

to a robot using a supervised learning algorithm. This case study will provide a basic

introduction to the task representation, a method of human communication, a machine

learning algorithm, the interaction between the two and their evaluation. We instanti-

ate this approach in a real robot 1. Further case studies will explore different aspects

of the framework described here.

2.1 Case Study 1 - Learning by Demonstration by Supervised Learn-

ing

Learning by Demonstration (LbD) is an area of research that focuses on teaching robots

new behaviors without extensive programming, rather by simply “showing” the robot

how to do a task. The rationale behind this approach is that using “natural” means

of teaching a machine minimizes the need for tedious programming of the task by a

human user. The implementation of an LbD algorithm can be broken down into three

steps:

1. Choice of Hardware - The first step selects the machine that the human is trying

to teach. Robots have different degrees of freedom and they must be chosen by

taking into account the complexity of the task to be learned. The type of robot

used has a direct effect on the choices made in following steps. Recent advances

1Portions of this work have appeared earlier in Subramanian (2010)
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in the field have made use of the HOAPTMHumanoid Robot by Fujitsu [Calinon

(2007)], Sony’s AiboTMRobot [Chernova and Veloso (2007)].

2. Method of Demonstration - This step focuses on the different interfaces that

can be used to transfer the task description to the machine. A few examples

are Kinesthetic Teaching (manually controlling the robot) [Calinon and Billard

(2007)], Observational Learning (watching the human perform the task) [Kang

and Ikeuchi (1995)] and Vocal Direction (human describes the task and its actions

vocally) [Dominguez et al. (2006)].

3. Learning Algorithm - The next step of the algorithm processes and generalizes

the data acquired in Step 2. This step determines how well the robot can perform

the task on its own. Popular methods include Supervised Learning [Calinon and

Billard (2008a); Chernova and Veloso (2007)] and Reinforcement Learning [Abbeel

and Ng (2004)].

By combining these steps with the efficient computing tools available today, LbD

has proven to be a powerful mechanism for robot learning in complex spaces. Reviews

of current advances in the field can be found in Argall et al.; Billard et al. (2009; 2008).

We will now elaborate on the implementation of an LbD algorithm on a humanoid

robot to learn constrained reaching gestures. The gestures we are interested in learning

are Obstacle Avoidance and Move Object to Goal.

2.1.1 Learning Machine - Nao Humanoid Robot

The robot that was used for this case study was Aldebaran’s NaoTM, shown in Figure.

2.1. It is an autonomous, programmable and medium-sized humanoid robot with 21

degrees of freedom (DOF). Being a humanoid robot with such high DOF, made it well

suited for both efficient interaction with humans and learning complex tasks. The Nao

has an inertial sensor and 4 ultrasound captors that provide stability and positioning

within space. The robot interacts with the environment via text-to-speech synthesis,

sound localization and facial recognition using its 4 microphones, 2 speakers and 2
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Figure 2.1: The Aldebaran’s Nao Humanoid Robot and its Degrees of Freedom

CMOS cameras. The Nao is also the official robot used in the Robocup Competition

[Baltes et al. (2010)].

2.1.2 Demonstration Method - Kinesthetic Teaching

After choosing the robot, we must now focus on the mode of demonstration. A human,

playing the role of the demonstrator, has the task of effectively communicating the re-

quired behavior to the artificial learning agent through various methods of interaction.

The mode of interaction used in this study is Kinesthetic Demonstration [Calinon and

Billard (2008b)], whereby the human communicates behaviors by manually controlling

the robots end-effectors. This form of interaction is less prone to error as the correspon-

dence problem is simplified. The correspondence problem [Nehaniv and Dautenhahn

(2001)] arises due to the differences in the body structure and dynamics of the teacher

and the robot. The transfer of motion from the teacher to the robot is a non-trivial

task. To overcome this issue, methods of demonstration like Kinesthetic Teaching, pro-

vide information from the robot’s stand-point rather than the teacher’s. In this form

of demonstration, it is important to understand the limitations associated with the

demonstrator as well as the imitator. Demonstrating complex tasks that involve con-

trolling multiple robot actuators in parallel can be impossible for a single human and

similarly the complexity of the task is limited by the hardware and software capabilities

of the robot. Given a robot task that involves a set of motor actions to be performed
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Figure 2.2: Screenshot of Fawkes GUI to enable plugins and control stiffness

in a sequential manner, we can sequence and decompose the tasks into known sets of

actions, performable by both the demonstrator and the imitator.

Depending on the task, the user must first decide which end-effectors of the robot

will be used. It can be the head, right/left arm, right/left leg or a combination. The

extent of control is limited by the users capabilities to control multiple robot chains at

the same time. Once decided, the stiffness associated with those joints is set to a value

that allows free movement.

Fawkes, http://www.fawkesrobotics.org [Niemueller (2009)], an open source robot

software designed for the Robocup platform was used to communicate with the robot.

Fawkes allows the user to control the various motion, vision and communication com-

ponents of the robot. It uses plugins to load and unload these components based on the

user’s needs. A screenshot of the Fawkes GUI is shown in Figure 2.2. Using Fawkes

the human transfers the behavior in the following manner:

1. Enable the motion plugin and set the stiffness of the required joints to zero. Say,

we are interested in using robot’s left arm.

2. Enable the savedemonstration plugin and manually control the joints in the

way required. For example, the user can now move the robotic arm towards

a cup and then carry it towards the saucer. During the demonstration, the
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savedemonstration plugin simply stores the raw servo data of the robot to a

text file. In this case, it will form a dataset with each row having 21 Dimensions.

3. Convert the data to a 6D position and orientation vector using the in-built kine-

matics model.

2.1.3 Learning Algorithm - Gaussian Mixture Regression

We choose Gaussian Mixture Models (GMMs) for efficient learning of constrained reach-

ing tasks as they are robust to noise, can efficiently generalize, and can capture corre-

lations between continuous features [Chernova and Veloso (2007)]. Gaussian Mixture

Regression (GMR) is performed on the generalized model to reproduce the task un-

der different circumstances. After acquiring the set of task trajectories through the

demonstrations, it is necessary for us to extract the associated constraints to better

understand how to reproduce the task. The generalization using GMMs is performed

on the extracted task constraints.

2.1.3.1 Task Constraints

Figure 2.3: Mouse Task - Mouse starting from random position has go to the File and
move it to the Bin

Given a demonstrated behavior, it is necessary for us to describe the constraints

associated with it in order to reproduce the task. Let us consider a simple example

like the mouse task [Calinon (2007)] shown in Figure 2.3. The task is straightforward -

the mouse starting from a random position has go to the File and move it to the Bin.

The question is how to define constraints for such a task. Constraints are achieved by

calculating the relative positions of the mouse with respect to the file and bin. Consider

a set of 4 demonstrations shown in Figure 2.4. The highlighted oval portions show the
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Figure 2.4: A set of 4 demonstrations of the Mouse Task with the highlighted positions
of the Mouse, File and Bin.

(a) X coordinate posi-
tion of Mouse relative
to the File

(b) Y coordinate posi-
tion of Mouse relative
to the File

(c) X coordinate posi-
tion of Mouse relative
to the Bin

(d) Y coordinate posi-
tion of Mouse relative
to the Bin

Figure 2.5: Task Constraints for the Mouse Task

different positions of the mouse, file and bin used in the demonstrations. Given this

dataset, we calculate the relative distance to extract the constraints. The constraints

are shown in Figure 2.5. The highlighted sections show us the sample points where the

mouse reaches the file and bin respectively. Therefore at these points the x,y distance

coordinates are zero, meaning the mouse and file/bin are at the same location. This

Mouse task can be extended to a number of scenarios and domains, like robot soccer,

obstacle avoidance etc. These constraints are then temporally aligned and generalized

using Gaussian Mixture Models.

2.1.3.2 Gaussian Mixture Models

A probabilistic representation of the computed constraint data is used to estimate the

variations and correlations across the variables, allowing a localized characterization of
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the different parts of the gesture. Mixture modeling is a popular approach for density

approximation of continuous constraints data [Calinon and Billard (2008b)]. A mixture

model consisting of K components is defined by the probability density function:

p(εj) =
K∑
k=1

p(k)p(εj |k) (2.1)

where εj is the input dataset, K is the number of Gaussian components, p(k) the priors

and p(εj |k) is the Gaussian function represented by

p(εj |k) =
1√

(2π)D|Σk|
e−1/2((εj−µk)T Σ−1

k (εj−µk)) (2.2)

From the above equation, we need to calculate the mean µk, covariance matrices Σk

and priors p(k). The value of K is task specific and can be estimated by trial and error

or by using the Bayesian Information Criterion (BIC) [Calinon and Billard (2008b)].

Figure 2.6: Extracting the Mean, Covariance, Priors (GMM Parameters) from the Task
Constraints

The required Gaussian parameters are estimated using the setup shown in Fig-

ure 2.6. We perform Maximum Likelihood Estimation iteratively using the standard

Expectation-Maximization (EM) algorithm. EM is a simple local search technique that

guarantees monotone increase of the likelihood of the training set during optimiza-

tion. The algorithm requires an initial estimate of the parameters, and to avoid getting

trapped into a poor local minima a rough k-means clustering technique is first applied

to the data [Calinon and Billard (2008a)]. The Gaussian parameters are then derived
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from the clusters found by k-means. The computed Gaussian parameters are shown

in Figure 2.7. Having estimated these parameters, the next step is to reproduce new

trajectories given new situations. We perform Gaussian Mixture Regression for this

purpose. The basis of regression is to estimate the conditional expectation of Y given

Figure 2.7: Task Constraints on the left have been generalized and represented as
gaussian models on the right side

X on the basis of a set of observations (X,Y ). Consecutive temporal values are used

as query points and the corresponding spatial values are estimated through regression.

In our case, X Time sample, Y Cartesian coordinates. Therefore, given time samples

as input data, the regression algorithm outputs a smooth generalized version of the

observed trajectories encoded in the GMM as shown in Figure 2.8. It should be noted

that it is not equivalent to taking the mean and variance of the data at each time step,

which would produce jerky trajectories and dramatically increase the number of pa-

rameters (the mean and variance values would be kept in memory for each time step).

With a probabilistic model, only the means and covariance matrices of the Gaussians

are kept in memory.

Figure 2.8: Regressed model of the generalized data
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2.1.3.3 Trajectory Reproduction

(a) GMR in Task Space, relative to
File

(b) GMR in Task Space, relative to
Bin

Figure 2.9: Gaussian Mixture Regressed representations with respect to system objects

The regressed model that has been obtained is the generalized version of the relative

positions of the File and Bin with respect to the Mouse (Task Constraints). It is shown

in Figure 2.9. Given new positions of the Mouse, File and Bin, we must reconstruct

the required trajectory. Using the GMM parameters, the reconstruction is performed

using the equation below [Calinon and Billard (2008b)]:

x
(n)
j+1 = (o(n) + x̂

(n)
j+1)− xj (2.3)

where j represents the temporal step, xj is the position of the robot end effector at step

j, o(n) is the position of the object and n is the number of system objects.

2.1.4 Experiments and Results

After performing the steps mentioned in the previous sections, we now instantiate the

algorithm on a 2D representation of the Mouse task and a real robot experiment. The

experiments are described below -

Experiment 1

We created a 2D simulator version of the mouse task explained earlier and provided the

learning agent 3 to 4 demonstrations to train on. We then tested the agent’s perfor-

mance in completing the task for circumstances not encountered during the training.

The resulting trajectories are shown in Figure 2.10 and Figure 2.11. The new positions

of the mouse, file and bin, are indicated by the “+” signs. The dashed lines indicate the
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demonstrations used for training and the red line indicates the reproduced trajectory.

We can see the system has produced a trajectory that passes very close to the new

positions.

Figure 2.10: This experiment contains a set of 3 demonstrations of the mouse task. The
red line indicates the reproduced trajectory for new positions of the mouse, file and bin
(indicated by the + signs).

Figure 2.11: Results for a mouse task with 4 demonstrations and new starting positions.

Experiment 2

Given three demonstrations of the Mouse Task, we tested the agent’s response to abrupt

changes in the positions of the file/bin during trajectory reproduction. The resulting
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trajectories are shown in Figure 2.12 and Figure 2.13. The red line, indicating the

reproduced trajectory, shows the sudden change in its path to compensate for the

unexpected change in the environment.

Figure 2.12: Shows the adaptability of the system to changes in the position of the file
during execution of the trajectory.

Figure 2.13: By changing the position of the bin in the very last time step, the system
is able to account for the new position.

Experiment 3

We perform a 2D Simulated Obstacle Avoidance test. The agent is trained using six

demonstrations to avoid objects of varying heights and orientation placed in the central

region. We tested its response to avoid obstacles of heights not used in training. The
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resulting trajectories are shown in Figure 2.14 and Figure 2.15.

Figure 2.14: A 2D obstacle avoidance task result

Figure 2.15: A 2D obstacle avoidance task result

Experiment 4

We used the Nao robot to perform this experiment. The task is for the robot to

use its left arm (starting from a specific position) to move towards an object and

carry it towards the goal. We performed 20 demonstrations of the task using different

locations for the object. These are shown in Figure 2.16 where the “+” indicates the

demonstration positions and “*” indicates the successful testing positions. The resulting

trajectory from one these positions is shown in Figure 2.17.
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Figure 2.16: Different positions of the object used for training and testing

Figure 2.17: A 3D demonstration using the right arm of the Nao to perform the object

to goal task.

Experiment 5

We used the right arm chain of the Nao to perform an Obstacle Avoidance task. The

agent is trained using 6 demonstrations to avoid objects of varying heights (5, 8, 12

and 15cm), placed in the central region. We tested its ability to overcome obstacles of

heights not used in training. The resulting trajectory for an obstacle of height 10cm is

shown in Figure 2.18.
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Figure 2.18: Obstacle Avoidance for the Nao after training it for 5,8,12 and 15cm

heights. It was tested with 10cm

2.1.5 Experimental Observations

During experiments, two important observations were made with respect to the choice

of the number of gaussian components (K) and the required number of demonstrations.

Choice of Gaussian Components

From the Figure 2.19 and Figure 2.20, we see that when choosing K=3, the regressed

model becomes to narrow and constricted and therefore may not lead to accurate results

in all positions. However, changing K=2 produces a regressed model that accounts for

all the training demonstrations.

Choice of Demonstrations

It is important to keep the demonstrations similar or reasonably close to each other,

otherwise the GMM will not be able to generalize the dataset if there is large variation

as shown in Figure 2.21. If such a gap exists, more demonstrations should be performed

focusing on those areas.
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Figure 2.19: Perform GMM using three

components.

Figure 2.20: Perform GMM using two

components.

Figure 2.21: Three sets of demonstrations with one quite different from the remaining

two.
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2.1.6 Limitations

There are four main limitations associated with the present implementation of the

algorithm:

1. Task space constraints alone do not satisfy the required level of performance. It

is not enough to only generalize the coordinate positions of the objects, better

accuracy can be achieved by taking the robot joint space constraints in account.

2. Every object in the system has to be defined by a six dimensional vector. As we are

using task space constraints and working with the Nao robot, every object needs a

3D position and 3D orientation. It maybe difficult to calculate in all circumstances

and the present solution manually takes the arm/leg to the destination position

and registers (at each timestep) the coordinates and orientation.

3. The discrete reproduced trajectory may contain sharp turns. Less frequently, the

algorithm tries to follow the path of the demonstrations already shown, in this

attempt it sometimes creates sharp turns and jerky movements. This motion may

harm the servo motors of the robot.

Overcome the Limitations

• Use of forward and inverse kinematics model allows us to employ joint constraints

and do away with 6D object coordinates.

• Use of a vision system allows positions to be automatically registered.

• Use of the approximate nearest neighbor approach when using higher dimensions

of the robot can help speed up computation of the generalizing model.

2.1.7 Summary

1. The generalized model was robust to the noise associated with the servo motors

of the robot. The memory consumed in these experiments was very small as only

the means and covariance matrices needed to be stored [Calinon (2007)].
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2. The robot was successful in completing the defined tasks in positions and orien-

tations that were not included in the demonstrations.

3. We tested the robustness of the model to sudden changes in the positions of

the objects while the robot was executing the behavior. The model was able to

overcome the online perturbations and go on to complete the task.

This case study showed how humans can teach a variety of object relocation tasks to

a robot using kinesthetic means of interaction. It shows how the human, using a small

number of demonstrations, was able to influence the underlying learning algorithm

(GMM) in such a way so as to achieve more efficient learning. A autonomous agent,

given the same task, will require an exponential amount of time before it is able to

generalize across all combinations of the task. With HELP, the robot was able to take

advantage of the knowledge of the human to complete the task.
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Chapter 3

Experiments in HELP

In the previous study, we introduced the essential concepts of LbD and showed how

humans and standard learning algorithms can influence the ability of a robot to learn

reaching gestures and object relocation tasks. The case study described in this section

will focus on advancing the learning algorithm used by the artificial agent. We describe

a novel reinforcement learning algorithm that efficiently utilizes the inputs given by the

human. This algorithm ensures that the agent will only require a limited number of

interactions from a human in order to guarantee efficient learning. We instantiate the

approach in a real robot experiment 1.

3.1 Case Study 2 - A Novel Approach to Learning by Demonstration

using Reinforcement Learning

Consider the example shown in Figure 3.1. It describes a simple task where a robot

starting at a random location, has to manoeuvre through obstacles, pick up a key and

using that key open the door to the goal. Intuitively one can guess that an autonomous

robot would be able to learn and perform such a task. However imagine if instead of

using a key to get the goal, the robot had to solve a combination lock. A lock that

has 2n combinations. One can imagine that the robot would probably take a very long

time to learn the task autonomously. Whereas with a human teacher, the learning

problem becomes a lot easier to solve. In this case study, we introduce a novel protocol

in which a Reinforcement Learning (RL) agent interacts with a human and learns to

solve the combination lock and numerous other problems in different domains. The

1Portions of this work appeared earlier in joint work with Thomas Walsh, Michael Littman and
Carlos Diuk
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Figure 3.1: Robot tracing a path through the obstacles to get the key that opens the
door to the goal.

method described is an extension of the Apprenticeship Learning Protocol [Abbeel and

Ng (2004)]. We generalize the approach taken by Abbeel and Ng (2004) and show that

it can be applied to several domains that were previously thought to be intractable.

The study also details a model of sample efficiency by which the number of human

interactions can be limited and yet ensure that the agent will converge to optimal

behavior. The protocol is instantiated in both simulator and robot domains.

3.1.1 Reinforcement Learning and Teachers

A recent survey has shown that Reinforcement Learning has been used in conjunction

with Teachers for a wide variety of applications. There has been work in the field of

Learning by Demonstration [Atkeson and Schaal (1997)], Online Social Reinforcement

Learning [Jr. et al. (2001)], Socially Guided Machine Learning [Thomaz et al. (2006)],

Apprenticeship Learning [Abbeel and Ng (2004)] and others. Each of these approaches

involves a teacher communicating with a reinforcement learning agent to solve simulated

and real-world problems. The bulk of research in this field has shown that there are clear

advantages with having a human teacher in the agent learning loop. These include the

ability to help an artificial agent efficiently explore large environments, to alleviate real-

world stochasticity, removing the need for hard-coding a behavior and others. These

are just a few of the advantages, there is always the satisfaction of having taught a

machine a complex task.
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It also interesting to note the several different ways in which humans have interacted

with RL agents to facilitate the process of learning. Research has shown that humans

use demonstrations, reinforcement, social protocols like advice and guidance and other

such methods. Each one focuses on making the communication more natural and in-

tuitive for the human. The most popular approach has been by using demonstrations.

Here, the human “shows” how to do the task, the robot processes that demonstra-

tion, extracts the required information and generalizes to perform the task again with

different state configurations.

In this study, we will be extending the Apprenticeship protocol [Abbeel and Ng

(2004)] to be able to learn tasks that were thought to be intractable for this algorithm.

3.2 The Apprenticeship Learning Protocol

We begin by defining the basic structures that encode reinforcement-learning domains.

A reinforcement-learning [Sutton and Barto (1998)] agent interacts with an environment

described by a Markov Decision Process (MDP). An MDP is considered to be a tuple

〈S,A, Tsa, R, γ〉, where

• S = s1, s2..., sn is a finite set of n states.

• A = a1, a2..., ak is a set of k actions.

• Tsa are the state transition probabilities associated with action a in state s.

• R : S → R is the reward function bounded by Rmax.

• γ ∈ [0, 1) is the discount factor.

An agent’s deterministic policy π : S 7→ A induces a value function over the state

space, defined by the Bellman Equations:

Qπ(s, a) = R(s, a) + γ
∑

s′ T (s, a, s′)Qπ(s′, π(s′)) and V π(s) = Qπ(s, π(s)).

An optimal policy π∗ for an MDP is a policy such that ∀s, V ∗(s) = V π∗(s) ≥

V π′(s),∀π′.
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The goal of a standard (autonomous) reinforcement-learning agent is to achieve

behavior close to this optimal value from its own experience sampling T and R on each

step.

We now describe the protocol introduced by Pieter Abbeel and Andrew Ng in 2004.

In their framework, a agent is given a set of demonstrations of a task from an expert

human. The framework then generalizes over those demonstrations, computes a model

of the environment and computes the optimal policy that the agent should follow. This

protocol is shown in Figure 3.2. The state space is defined by a set of features that

characterize important information about different parts of the world. Here are some

Figure 3.2: The Apprenticeship Learning Protocol by Pieter Abbeel and Andrew Ng.

of the constraints and assumptions that they made:

• All the start positions of the demonstrations are drawn from a fixed distribution.

• All the demonstrations are given in bulk upfront.

• The reward function is assumed to be a linear function of the feature weights.

We will describe a protocol by which we overcome these constraints and extend the

framework to other learnable classes.

3.2.1 A Generalized Approach to Apprenticeship Learning

We now consider a paradigm where the agent’s experience is augmented with experience

produced by a teacher and the criterion is to find a policy whose value function is nearly

as good as, or better than, the value function induced by the teachers policy. The value

function here is indicative of how “good” the computed policy is. The components

of the system include a standard RL agent, a Model Planner that builds a model of
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the world based on the agents observations, a Planner to plan a path/trajectory that

will maximize cumulative reward, the Environment in which the agent is acting and a

Teacher who provides inputs to help the agent perform the task. These components

are put together in a manner shown in Figure 3.3. The agent starts from a new initial

Figure 3.3: The Generalized Apprenticeship Learning Protocol.

state and accesses the Model Planner to compute a model of the world that it is in.

The Planner using that model generates a path from start to goal that will maximize

cumulative reward. The agent reviews the computed plan and takes actions accordingly.

This loop continues until the Episode limit, H has been reached. After which the

Teacher, depending on his assessment of the agent’s performance, provides a trace from

start to goal. The criteria the teacher uses to decide when to send a trace is left general

here, but one specific test of value is for the teacher to provide a trace if at any time

t in the episode, QπT (st, at) < QπT (st, πT (st)) − ε (ε here is an accuracy parameter).

That is, the agent chooses an action that appears worse than the teacher’s choice in

some state. Traces are of the form: τ = (s0, a0, r0), ...(st, at, rt), ...(sg, rg), where s0 is

the initial state, and sg is a terminal (goal) state or some other state if the H cutoff

is reached. Notice that the trajectory begins at the initial point where the agent first

started, and may not even contain the state in which the agent made its mistake. The

individual transitions in this trace must adhere to the environment’s dynamics (the

teacher cannot unilaterally pick next states).

Formally, we define the Apprenticeship Learning Protocol for episodic domains
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where each episode has a length of at most H = Poly(|M |, |A|, Rmax,
1

1−γ ) in Algo-

rithm 1. Here, |M | is a measure of environment complexity.

Algorithm 1 The Apprenticeship-Learning Protocol
The agent starts with S, A and γ, a time-cap H and has access to episodic environ-
ment E
The teacher has policy πT .
for each new start state s0 from E do
t = 0
while The episode has not ended and t < H do

The agent chooses at.
〈st+1, rt〉 = E.progress(st, at)
t = t+ 1

end while
if the teacher believes it has a better policy for that episode then

The teacher provides a trace τ starting from s0.
end if

end for

We take into account that fact that in the real world, no human is perfect. Therefore

it is quite possible that teacher’s trace might do worse that what the agent thought

to be correct. Since the teacher’s value function may not be optimal, we distinguish

between these traces and their more helpful brethren with the following definition.

Definition 1 A valid trace (with accuracy ε) is a trace supplied by a teacher executing

policy πT delivered to an agent who just executed policy πA starting from state s0 such

that V πT (s0)− ε > V πA(s0).

A trace in which the human teacher does better than what the agent thought was

best is called a Valid trace. Defining valid traces in this way allows agents to outperform

their teacher without being punished for it. With deterministic policies, this definition

means that at no time in a valid trace does the teacher prescribe an action that is much

worse than any of the actions the agent used in that state. Note that when the teacher

enacts optimal behavior (πT = π∗), only valid traces will be provided.
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3.3 Sample Efficiency in Apprenticeship Learning

We now introduce a teacher into the learning loop in a way that allows us to characterize

the efficiency of learning analogous to the PAC-MDP framework [Strehl et al. (2009)].

PAC-MDP stands for Probably, Approximately, Correct Markov Decision Process. It

is defined by the accuracy parameters ε and δ in this manner - an agent is said to be

PAC-MDP if with probability 1− δ, it is ε close to optimal behavior. This framework

has been studied widely in a number of papers [Strehl et al. (2006, 2009); Asmuth et al.

(2009)]and has been primarily used to characterize efficient behavior in the autonomous

setting. In this study we define the PAC-MDP-Trace framework for models that involve

a teacher in the learning loop. We define PAC-MDP-Trace learning as follows:

Definition 2 A reinforcement-learning agent is said to be PAC-MDP-Trace if, given

accuracy parameters ε and δ, and following the protocol outlined in Algorithm 1, the

number of valid traces (with accuracy ε) received by the agent over its lifetime is bounded

by Poly(|M |, |A|, Rmax,
1

1−γ ) with probability 1− δ, where |M | measures the complexity

of the MDP’s representation, specifically the description of T and R (the environment’s

dynamics and reward functions).

This definition allows us to characterize the efficiency of an agent based on its

behavior. We show that the number of times a teacher can provide a valid trace in

many domains is bounded. We now introduce a class of models where PAC-MDP-

Trace behavior can be induced.

3.3.1 Model Learning Frameworks

We now provide a brief introduction to two model learning frameworks - KWIK and MB.

We show how they can be used for efficient model learning and then go on to describe

the model learner used in our framework. We will describe these model learners using

the combination lock example described earlier.



36

3.3.1.1 KWIK - Knows What It Knows

In autonomous reinforcement learning, the recent development of the KWIK [Li et al.

(2008)] or “Knows What It Knows” framework has unified the analysis of models that

can be efficiently learned. The KWIK-learning protocol for supervised learning consists

of an agent seeing an infinite stream of inputs xt ∈ X. For every input, the agent has

the choice of predicting a label (ŷt ∈ Y ) or admitting ⊥ (“I don’t know”). If the agent

predicts ⊥, it sees a noisy observation zt of the true label. This is shown in Figure

Figure 3.4: The Knows What It Knows Protocol.

3.4. A hypothesis class is said to be KWIK learnable if, with probability 1 − δ two

conditions are met:

1. Every time the agent predicts ŷt 6= ⊥, ||ŷt − h∗(xt)|| ≤ ε.

2. The number of times ŷt = ⊥ is bounded by a polynomial function of the problem

description.

In autonomous reinforcement-learning, if T and R are efficiently KWIK learnable,

efficient behavior can be achieved by optimistically filling in the ⊥ predictions. These

results cover a large number of models common to autonomous reinforcement learning,

including flat MDPs and DBNs [Li et al. (2008)]. However, several relevant and intu-

itively appealing classes are not KWIK learnable. For instance, conjunctions of n terms
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are not KWIK learnable because negative examples are so uninformative. An environ-

ment with a “combination lock” of n tumblers that need to be set to the correct digits

for a high reward action (“unlock”) to be effective, can require an exponential number

of suboptimal steps. But, in the trace setting, learning to open such a lock is simple:

the agent only needs the teacher to supply a single trace to learn the combination!

3.3.1.2 MB - Mistake Bound

Figure 3.5: The Mistake Bound Protocol.

Mistake Bound [Littlestone (1987)] is a model learning framework which has been

previously linked with domains that have a teacher in the learning loop [Angluin (1987);

Goldman and Kearns (1992)]. The MB learning protocol for model learning is essen-

tially the same as the KWIK protocol except for three changes -

1. In MB, there is no ⊥ prediction. The agent must always predict a ŷt ∈ {0, 1} and

receives a true label when it is wrong.

2. MB is only defined for deterministic hypothesis classes, so instead of zt, the agent

will actually see the true label.

3. Efficiency is characterized by a polynomial bound on the number of mistakes

made.
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This is shown in Figure 3.5. It follows [Li et al. (2008)] that any efficient KWIK learning

algorithm for a deterministic hypothesis class can become an efficient algorithm for MB

by simply replacing all ⊥ labels with an arbitrary element from Y .

3.3.1.3 The Mistake Bounded Predictor Framework

We now introduce the following criteria, called a mistake-bounded predictor (MBP)

Definition 3 A mistake-bounded predictor (MBP) is an online learner with ac-

curacy parameters ε and δ that takes a stream of inputs from set X and maps them to

outputs from a set Y . After predicting any ŷt, the learner receives a (perhaps noisy)

label zt produced by an unknown function from a known hypothesis class. An MBP must

make no more than a polynomial (in 1
ε , 1

δ , and some measure of the complexity of the

hypothesis class) number of mistakes with probability 1 − δ. Here, a mistake occurs if,

for input xt, the learner produces ŷt and ||h∗(xt) − ŷt|| > ε, where h∗ is the unknown

function to be learned.

Given below is a model-based RL algorithm (MBP-Agent, Algorithm 2) for the appren-

ticeship setting that uses an MBP learner as a module for learning the dynamics of the

environment.

Algorithm 2 MBP-Agent
The agent knows ε, δ, and A and has access to the environment E, teacher T , and a
planner P for the domain.
Initialize MBP learners LT (ε, δ) and LR(ε, δ)
for each episode do
s0 = E.startState
while episode not finished do
at = P.getPlan(st, LT , LR).
〈rt, st+1〉 = E.executeAct(at)
LT .Update(st, at, st+1);LR.Update(st, at, rt)

end while
if T provides trace τ starting from s0 then
∀〈s, a, r, s′〉 ∈ τ, LT .Update(s, a, s′), LR.Update(s, a, r)

end if
end for

The Apprenticeship Learning Protocol with the MBP agent is shown in Figure 3.6.
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Figure 3.6: The Mistake Bounded Predictor Protocol.

Like KWIK, MBP observations can be noisy, and like MB, the learner is allowed

to make a certain number of mistaken predictions. In fact, we can formalize this

relationship with the following proposition.

Proposition 1 Any hypothesis class that is KWIK or MB learnable is MBP learnable.

Proof 1 A KWIK learner can be used in its standard form, except that whenever it

predicts ⊥, the MBP agent should pick a ŷt ∈ Y arbitrarily. Also, the underlying

KWIK learner should not be shown new labels when it does not predict ⊥, though the

MBP agent does receive them. MB learners are defined for deterministic hypothesis

classes, so we can assume no noisy observations exist. In this setting, the MB and

MBP protocols line up.

An important note here is that MBP learners never acknowledge uncertainty, our

algorithm for the apprenticeship setting believes whatever its model tells it (which could

be mistaken). While autonomous learners run the risk of failing to explore under such

conditions, the MBP-agent can instead rely on its teacher to provide experience in more

“helpful” parts of the state space, since its goal is simply to do at least as well as the

teacher. Thus, even model learners that default to pessimistic predictions when little

data is available, can be used successfully in the MBP-Agent algorithm.
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3.3.2 Efficient Apprenticeship Learning

We now describe how MBP learners are PAC-MDP-Trace as long as the transition

function T and reward function R for an MDP are learnable by an MBP. Algorithm 2

has the following property.

Theorem 1 An MBP-learner is PAC-MDP-Trace for any domain where the transi-

tions and rewards are MBP learnable.

The heart of the argument is an extension of the standard Explore-Exploit lemma

[Sutton and Barto (1998)], we call the Explore-Exploit-Explain Lemma.

Lemma 1 On each trial, we can define a set of known state,action (〈s, a〉) pairs as the

ones where the MBP currently predicts transitions accurately. One of these outcomes

occurs: (1) The agent will encounter an unknown 〈s, a〉 (explore) with high probability.

(2) The agent will execute a policy πt whose value is better or not much worse than the

teacher’s policy πT (exploit). (3) The teacher’s trace with encounter an unknown 〈s, a〉

(explain) with high probability.

Lemma 1 proves Theorem 1 because MBP can only make a polynomial number of

mistakes, meaning cases (1) and (3) can only happen a polynomial number of times.

By any of several simulation lemmata, such as Lemma 12 from [Strehl et al. (2009)],

Theorem 1 can be proved. A detailed description of the proof is available in [Walsh

et al. (2010)].

In summary, KWIK-learnable models can be efficiently learned in the autonomous

RL case, but MB learning is insufficient for exploration. MBP covers both of these

classes, and is sufficient for efficient apprenticeship learning, so models that were au-

tonomously learnable as well as many models that were formerly intractable (the MB

class), are all efficiently learnable in the apprenticeship setting.

As an example, the combination lock described earlier could require an exponential

number of tries using a KWIK learner in the autonomous case, and MB is insufficient

in the autonomous case because it does not keep track of what combinations have been

tried. But in the apprenticeship setting, the MBP-Agent can get the positive examples
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it needs and will succeed with at most n (one for each relevant tumbler) traces. The

next section explains this is more detail.

3.3.3 Learning Conjunctions

We now describe an MBP-learnable class (Conjunctions) that is not autonomously

learnable. It has been shown in Li et al. (2008) that in KWIK, conjunctions of size

k = O(1) are efficiently learnable. The system simply enumerates all nk conjunctions

of this size, predicts ⊥ unless all the hypotheses agree on a prediction, and eliminates

wrong hypotheses. However, when the conjunction is of size O(n), it can result in an

exponential number of ⊥ predictions. This situation arises because negative examples

are highly uninformative. In the combination lock, for example, the agent has no idea

which of the 2n settings will allow the lock to be unlocked, so it must predict ⊥ at every

new combination. Note though that if it does see this one positive example it will have

learned the correct combination.

In contrast, learners in the MB setting can efficiently learn conjunctions of arbi-

trary size by exploiting this asymmetry. Specifically, an MB agent for conjunction

learning [Kearns and Vazirani (1994)] can maintain a set of literals lj ∈ LH where

lj = 1 for every positive example it has seen before. For all lj ∈ LH = 1, the agent cor-

rectly predicts true, otherwise it defaults to false. By using such defaults, which KWIK

agents cannot, and by only counting the highly informative positive samples, each of

which subtracts at least one literal from LH , polynomial sample efficiency is achieved.

Having proved that Conjunctions can be MB-learned, using the earlier proposition, we

say that the class is MBP learnable.

This methodology can be extended to learning a number of other classes like Stochas-

tic STRIPS Operators, Deterministic OOMDP operators and many others [Walsh et al.

(2010)].
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3.4 Experiments and Results

In this section we describe the results of applying the Apprenticeship Learning protocol

on a simulated and robot version of the Taxi Domain [Dietterich (2000)]. The domain,

shown in Figure 3.7, describes a fixed grid with labeled cells. These cells indicate

potential locations where passengers can be picked up and dropped off by a taxi. The

thickened lines indicate obstacles between cells. The task is for a taxi, starting in

any random cell, to navigate to one of the predefined cells (Y,R,B or G), pick up the

passenger and then navigate to another cell (Y,R,B or G) to drop-off the passenger.

There are many combinations of pickup and drop-off locations and several transition

conditions (obstacles) to be learned. We believe this domain will be a good test for

both autonomous agents as well as teacher-guided agents.

Figure 3.7: The Taxi Domain.

3.4.1 Simulated Taxi World

Our first experiment is in a simulated “taxi” domain (from [Diuk et al. (2008a); Di-

etterich (2000)]): a 5 × 5 grid world with walls, a taxi, a “passenger” and 4 possible

destination cells. We compare the performance of the Apprenticeship Learning algo-

rithm with one of the current state-of-the-art autonomous approaches, a KWIK-based

algorithm known as DOORmax [Diuk et al. (2008b)]. In DOORmax, the world is repre-

sented in a deterministic object-oriented manner along with attributes, predicates and

effects. There exist a set of conditions over the predicates that the agent uses to learn

the effects of each of its actions. In the Taxi world, the agent as mentioned before must
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Figure 3.8: A KWIK learner (autonomous) and an MBP learner (apprenticeship) in
the Taxi Domain

learn about navigation and the criteria necessary for picking up and dropping off a

passenger. The agent has 6 actions, four of which move it one step along the 4 compass

directions, one pickup action and one drop-off action.

Figure 3.8 shows our MBP-Agent approach with apprenticeship learning reaching

optimal behavior ahead of the autonomous DOORmax approach. The apprenticeship

learner acquires an optimal policy faster than the autonomous agent. It is important

to note here that the autonomous agent is actively exploring, while the MBP agent

solely relies on the traces provided by the teacher. This way there is no unnecessary

exploration done by the MBP agent.

3.4.2 Robot Taxi

The second experiment involved a robotic version of the taxi domain. The robot (Fig-

ure 3.9) was constructed using a Lego MindstormsTM kit. It had a standard dual-motor

drive train and a third motor controlling its “gripper” that could descend over an object

and hold it next to the robot’s body, and also raise up to “drop-off” the object. The

passenger object was a standard 2.2-inch Rubik’s Cube. The objects were identified

and tracked using an overhead camera over a 40in× 40in wooden platform.
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Figure 3.9: The taxi robot, its passenger and the goal.

The discrete actions for the robot were similar to the simulated taxi, but instead of

being able to simply strafe to the right or the left, the robot could only move forward,

backward, turn right 75 degrees, turn left 75 degrees (both turns moved it slightly

forward), and pickup or drop-off the passenger (lower or raise the gripper). For the

pickup action, which needs to be quite precise, the atomic action had a subroutine

where the robot would move forward slightly and then, if its touch sensor was activated,

close the gripper. Thus, the action was only successful if the agent was facing in the

correct direction and near the object, otherwise it just moved forward slightly.

In the OOMDP representation used in the experiments, the attributes were the

robot’s x and y coordinates (discretized by 8-inch intervals) and its orientation, dis-

cretized in intervals of 30 degrees. The passenger object was placed in one of 4 pre-

determined locations (as in the simulated taxi domain) and its destination was one of

the 3 other colored locations. The predicates for the OOMDP conditions were Wall-

ToLeft, WallToRight, WallBehind, WallInFront (all relative to the robot) as well as

HasPassenger, and PassengerReachable, and AtDestination. The OOMDP effects were

changes in the robot’s attributes and the status of the passenger. The rewards of the

domain were set as −1 per step and 1 for a successful dropoff at the correct location.

Start states for the robot were picked arbitrarily. The MBP-Agent in this task filled in



45

transitions for conditions it had not witnessed by predicting “no change” (a pessimistic

outcome, as described earlier in the paper).

A human demonstrated traces by controlling the robot directly. Unlike the simulated

version, the real-world transitions are stochastic (due to noise). So in this experiment,

the robot was given all the conditions it might encounter and had to learn the effects and

probabilities of the actions. We provided traces after each episode until it completed the

task twice on its own from random start states. We ran this experiment in two different

settings: one where the dynamics of the environment’s borders (physical walls) were

given, and one where the robot had to learn about behavior near walls. The first setting

contained 6 condition settings and required 5 traces and a total of 159 learning steps. In

the harder setting, there were 60 conditions to learn and the agent required 10 traces and

516 learning steps. This experiment demonstrates the realizability and robustness of

our apprenticeship-learning protocol in real world environments with sensor imprecision

and stochasticity.

3.5 Conclusion

In this case study, we provided a novel approach to learning from a teacher using a

reinforcement learning agent. We extended the Apprenticeship Learning Protocol in a

number a ways.

• identified a number of model classes (KWIK, MB and combinations of them) that

are learnable in the generalized paradigm.

• Provided a bound on the number human interactions required in the form of Valid

Traces.

• Allow the agents to learn a better model than its Teacher.

• The agent was allowed to start from random states in the world.

• Traces need not be given in bulk up front.

There is a clear separation between Autonomous agents and ones with a Teacher.

This case study reveals the advantages of using a smart learning algorithm as part of
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HELP. The agent was able to guarantee efficient learning and the human was guaranteed

limited number of interactions. These two results are essential for any human-robot

interaction framework.
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Chapter 4

Experiments in HELP

The final case study explores another dimension of HELP where the modes of human in-

teractions are varied. The study details two standard reinforcement learning algorithms

and describes the different forms of inputs that humans can provide and how they can

be used by the algorithm. We instantiate the approach in a car driving simulator.

4.1 Case Study 3 - Extending the Modes of Human Interaction

Imagine a situation where an instructor is teaching people how to drive a vehicle. He

shows them how to start and control the car, how to switch gears, parallel park, obey

traffic rules and so on; he praises safe driving, discourages dangerous manoeuvres and

gives his trainees advice and motivation. We are now faced with the task of being the

driving instructor and not teaching a set of human trainees but a set of artificial agents

how to drive using the mentioned techniques. At this point, we ask ourselves -

• Is it possible to represent the form of teaching used by the driving instructor in

a mathematical model?

• Is there a mathematical equivalent to the words “show”, “praise”, “discourage”,

“advice” and “motivation”?

• How can the artificial agent understand and utilize the information provided by

the instructor?

• Given that information, can the agent learn and respond similar to a human?

This case study is aimed at exploring the answers to some of these questions. We

focus primarily on the different types of information that the human instructor can
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provide and how they affect the agent’s ability to learn. This problem is investigated in

the realm of Reinforcement Learning (RL) where the trainees are considered to be RL

agents. An RL agent is one that takes actions in an unknown environment and tries to

maximize its overall reward. The RL framework is explained in Figure.4.1. Formally,

Figure 4.1: Traditional RL Framework.

the basic reinforcement learning model consists of: a set of environment states S ; a set

of actions A; and a set of scalar “rewards”. At each time t, the agent perceives its state

st ∈ S and the set of possible actions A(st). It chooses an action and receives from the

environment the new state st+1 and a reward rt. The environment is formulated as a

Markov Decision Process (MDP) where state transitions and rewards probabilities are

typically stochastic. Given this setup, the reinforcement learning agent must develop a

policy π : S → A (mapping of states to actions) that maximizes the cumulative reward

received. In a traditional RL setting the agent learns autonomously. However in this

case study, we introduce a human instructor in the loop and investigate the effects of

his interactions on the RL agent.

4.2 Experimental Setup

This section describes the various components of the experiment. We begin by formally

introducing the car driving domain and its characteristics, then briefly describing two

standard reinforcement learning algorithms and then a note on the different types of
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instructors that will be assisting the artificial agent.

4.2.1 The Highway Car Domain

The environment used in this study is a simulated version of the car domain similar to

one described in [Abbeel and Ng (2004); Syed et al. (2008)]. A descriptive screen-shot

of the simulator is shown in the Figure 4.9. The highway consists of 3 lanes with an

additional off-road lane, one on either side (indicated by the green patch). The agent

(blue square) is driving on the highway at a constant speed in the presence of oncoming

cars (red triangles). Every state of the agent in the driving world is described by using

Figure 4.2: Screenshot of the Driving Simulator.

a set of features. We use three features in particular, one indicating whether the agent

has collided with an oncoming car, two indicating whether the agent has gone off-road

and a feature describing which lane the agent is currently in. The goal of the agent is

to drive safely on the highway by learning to avoid collisions with oncoming cars, to

avoid going off-road and to maintain lane discipline. To achieve this goal, the agent is

equipped with three actions (left, right and stay in place) and has access to a human

driving instructor who is assumed to be optimal at the given task. The instructor

communicates his knowledge to the agent through a keyboard interface (shown in the

figure).
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4.2.2 Learning Algorithms

Here we describe the algorithms used by the agent to learn the driving task. We first

give a more formal definition of an MDP and then detail two algorithms, Q-learning

and R-Max, that have been widely used to solve MDPs.

An MDP is a 5-tuple 〈S,A, T , R, γ〉 with states S, actions A, transition functions

T : S × A 7→ Pr[S], reward function R : S × A 7→ [Rmin, Rmax], and discount factor

γ. The function we would like to maximize is
∑∞

t=0 γ
tRat(st, st+1), where the actions

at are chosen according to policy π. We now detail the learning algorithms using the

above definition as the foundation.

4.2.2.1 Q-learning

The Q-learning algorithm [Watkins (1989)] is a model free learning algorithm that has

been widely used to solve infinite horizon MDPs. Model free indicates that the agent

can learn to perform the task without ever having to build a model of the environment

in which it is taking actions. Given the formal definition of an MDP, this algorithm

focuses on learning which action is optimal for each state. The algorithm computes

the “Quality” of a state-action combination: Q : SXA→ R. The recursive step of the

Q-learning algorithm is given by the equation:

Q(st, at)← Q(st, at) + α[rt+1 + γmax
a

Q(st+1, a)−Q(st, at)] (4.1)

Using the above equation, the Q-values are iteratively updated as the agent takes actions

in different states and receives rewards. The optimal policy π∗ is computed using the

formula:

π∗(st) = arg max
a

Q(st, at) (4.2)

This algorithm has been proven [Watkins (1989)] to converge to optimal policy given

the following set of criteria -

• The system must be a deterministic MDP.

• The reward values are bounded by some constant Rmax.
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• The agent visits every possible state-action pair infinite times.

The algorithm variables, α (learning rate) and γ (discount factor) have a significant

influence of the rate of convergence of the algorithm. The learning rate determines

to what extent the newly acquired information will override the old information and

the discount factor determines the importance of future rewards. The algorithm has

several advantages: it is easy to implement, is exploration insensitive, one of the most

effective model-free algorithm for learning from delayed reinforcement. On the other

hand, algorithm does not scale to large complex domains and it takes a very long time

to converge.

4.2.2.2 R-Max

R-Max [Brafman and Tennenholtz (2002)] is a model-based reinforcement learning al-

gorithm which is said to attain near-optimal average reward in polynomial time. In

contrast to a Q-learner, the R-Max agent maintains a complete, possibly inaccurate

model of its environment and acts based on the optimal policy derived from this model.

The algorithm initializes the model optimistically implying that all actions in all states

return the maximum possible reward. This acts as a driving force causing the agent to

explore different parts of the state space by taking different actions and updating its

model based on its observations (feedback from the environment).

To summarize the algorithm, it starts with an initial estimate for the model and

assumes that all states and all actions return the maximum reward and with probability

1, transition to a fictitious state So. On the basis of the current model, an optimal

policy is computed using one of several methods. The one used in this implementation

is Value Iteration. The transitions and rewards received for every state-action pair are

stored and once sufficient information has been acquired, the model is updated and the

optimal policy is recomputed. This process repeats. The optimality and convergence

proofs of R-Max can be found in [Brafman and Tennenholtz (2002)]. This algorithm

has the advantage of actively encouraging exploration and does not require the MDP

to be deterministic. A more descriptive form of algorithm is available below:
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Algorithm 3 R-Max Algorithm
Input:

• the number of states S, the number of actions A, the upper bound on the
reward function Rmax and the error bound ε.

Initialize:

• Construct a model M consisting of S + 1 states and A actions. Here the
additional state So is considered to be a fictitious state.

• Every state and action in the model is initialized with Rmax (optimistic) and
transitions are initialized such that TM (Si, a, So) = 1 for all states Si and for
all actions a.

• Initialize a boolean value known/unknown to all state-action pairs indicative of
how well the algorithm can predict the outcome given a state-action pair.

Repeat:

• Given a model compute the optimal policy (ε close) for the current state and
execute it until a new state-action pair becomes known.

• Observe and record the number of times a state-action pair has been visited
and the possible outcomes during each visit. Once it crosses a threshold, toggle
the boolean value from unknown to known.

• Repeat.

4.2.3 Forms of Human Input

The role of the instructor in the driving domain is to transfer his knowledge of the task

to the artificial agent using natural methods of interaction. When teaching humans,

the instructor uses demonstration, motivation, advice, and other such social methods

to train the humans. However we have seen from the previous sections that agents

understand their world only in terms of states, actions and rewards. The question is

then how can a human teach an agent to drive using natural means of interaction and

still provide the agent with signals that it can comprehend. This dilemma is illustrated

in Figure 4.3. To overcome the barrier, we introduce three types of human instructors:

1. The Motivational Instructor

2. The Directive Instructor

3. The Associative Instructor
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Figure 4.3: Bridging the communication gap between the instructor and artificial agent.

In order to understand the mapping of human interactions to agent-understandable

language, let us analyze the contributions of each of the instructors:

• The first instructor (motivational) is one who commends the agent when it per-

forms a desirable action and at the same time punishes the agent for performing

sub-optimally. The inputs from this instructor are translated to the learner in

the form of Rewards.

• The second instructor (directive) is one who directly commands the agent by

telling it what to do. He manoeuvres the agent through the highway by controlling

its moves until the agent has learned to perform autonomously. The inputs from

this instructor are translated to the learner in the form of Actions.

• The third instructor (associative) is one who teaches the agent by relating the

components of driving that require similar behavior. By doing this he allows the

agent to link the different aspects of driving that require the same or associated

responses. The inputs from this instructor are translated to the learner in the

form of States.

Given that we now have a way to bridge the gap between the teacher and the agent,

we explore the performance of the agent with each of these styles of instruction.
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4.3 Driving Instructor and the Various Modes of Interaction

We have now setup the experiment by describing the car driving domain, the artificial

agents and the types of human instructors. In this section, we execute the different

styles of teaching on the two simulated agents (Q-learner and R-Max learner) and

evaluate the learned policy of the agents. During each trial, we study the effects on the

interaction on the two learners as well as on the instructor.

4.3.1 The Motivational Instructor

It is well known that right from the formative years a child is nurtured by its parents

using a combination of reinforcement, praise, punishment and anger. Using this interac-

tion, the child learns to do things that will produce positive reactions from its parents.

We extend this form of interaction and learning, to the driving domain experiment.

The instructor uses a combination of positive and negative rewards to indicate to the

agent whether it is driving well or not. In the long run, the agent should learn to take

actions that maximize the total received reward. This approach to machine learning

has been successfully used by Thomaz et al. (2006) and Knox and Stone (2009). In

Thomaz et al. (2006), the human observer uses social modes of interaction like rewards,

guidance and advice to communicate the task to the agent. It was successfully applied

to a simulated version of Sophie’s Kitchen and a real world robot learning experiment.

Knox and Stone (2009) describe a framework called TAMER, which stands for Train-

ing an Agent Manually via Evaluative Reinforcement. The human observer provides

rewards to the agent depending on his assessment of the agent’s policy. The underlying

algorithm models the human’s reward function using a function-approximator and ex-

tends this reinforcement to unseen states using a regression algorithm. This framework

was successfully applied to a game of Tetris and the Mountain Car domain.

Let us now understand how this instructor teaches the agent to drive. The screen-

shot of the simulator, shown previously in Figure 4.9, shows a Human Interface Module

through which the human provides his input to learner. When the experiment starts,

the agent is performing randomly as it has no prior on the task to be learnt. The teacher
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observes the agent act and when he feels that agent has performed a suboptimal action

(causing it to collide or go off-road), he activates the interface module. At this point,

the simulated driving world comes to standstill and awaits the assessment of the current

environment configuration. The human uses the keyboard and provides a scalar value

that could be positive indicating praise or negative indicating punishment. The agent

receives and processes this reward using its reinforcement learning algorithm. For all

states where the human does not provide reinforcement, the agent receives a default

reward of 0. Figure 4.4 illustrates the various states of the driving world and types of

reinforcement given by the optimal teacher.

Figure 4.4: Different Configurations of the Driving Domain and the Reinforcement
given by the Instructor.

4.3.1.1 Effect on the Learners

Q-learning

In the standard Q-learning algorithm, the agent has access to a reward function.

In this trial, the motivational instructor assumes the role of the reward function and

provides the agent with appropriate rewards. The Q-learning update now becomes:

Q(st, at)← Q(st, at) + α[HumanRewardt+1 + γmax
a

Q(st+1, a)−Q(st, at)] (4.3)
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Figure 4.5: Number of steps taken by the learners to reach the optimal policy (with
Motivational Instructor).

Every state in the environment has a set of features associated with it. Each reward

provided by the human is linked to a state and in turn to a feature configuration set.

This association allows the Q-learner to learn the quality of human reward expected for

a particular feature set. Thus when the agent encounters an unseen state that has the

similar feature values as a state previously encountered, it will act as though they are

the same state. This action is then followed by positive or negative reward depending

on the human’s assessment of the agent’s last action. The performance was further

tested by modifying the variables of the algorithm.

R-Max

R-Max as described previously is an efficient model based algorithm. The model is

initialized optimistically with high reward in all states, for all actions. As the agent

acts, it receives reward from the environment and updates its list of state-action pairs

visited. In this trial, the reward is no longer given by the environment but given by

the instructor. Essentially the change made to the algorithm can be represented as

Environmentreward ⇒ Humanreward. The agent associates the reward obtained with

the feature configuration of concerned state. This information is extrapolated to unseen

states and is executed by the agent the next time it updates its model. The advantage

with this algorithm over Q-learning is that the agent actively explores and does not
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depend on the human to explore. This way learning is much faster. The optimality of

the obtained policy was tested by modifying the variables of the algorithm.

Figure 4.5 compares the performance of the two learning algorithms, that learns

from a motivational instructor, the task of safely driving a car on a highway with two

oncoming cars. The performance is calculated as a measure of the number steps taken

before the agent is optimal and the number human interactions (shown in the bracket)

that were required to reach an optimal policy.

4.3.1.2 Effect on the Instructor

This experiment was run using 2 human subjects. Their role as the motivational in-

structor was explained to them and they were given the task of teaching the agents to

learn to drive safely. Figure 4.6 shows the performance of the agent across 5 trials with

human subjects. The graph shows how the instructor was able to learn when and how

to give the motivation in order to enhance the agent’s learning.

Figure 4.6: Performance of the agent across 5 trials with 2 Motivational human subjects.

Here are a few observations describing the effects of the learning interface on the

human:

• The Q-learning agent is slow learner and takes a long time to converge. This can

be attributed to that fact that it is exploration insensitive. The human observes

that the agent is not exploring, so he modifies his method of providing rewards.
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Humans alter their behavior, taking into account the agent’s capabilities, and in

a manner that makes the agent explores it world.

• Humans tend to give reward even before agent has performed the required action.

The human is in effect protecting the agent from imminent danger. Although

the human might think that he is correcting the behavior, the Q-learner, since it

doesn’t have a model, is unable to associate received reward with future states.

• Humans like to see immediate effects of their rewards. If this is not seen, there

is a tendency to punish the agent (negative reward) for the mistake. A mistake

that the Q-learning agent is still to recognize.

4.3.2 The Directive Instructor

A Directive Instructor is one who teaches the agent by explicitly telling it what set of

actions to take given the current configuration of the world. The instructor does not

provide a measure of reinforcement but instead a direct action that should be taken.

This type of learning is analogous to way the teachers help students solve mathematical

problems. They help the children by telling them how to solve the first few set of

problems until the students are able to solve them on their own. Behavioral Cloning

[Bain and Sammut (1996)] is another similar technique. In this method, learning agents

first watch either a human or agent expert execute the required behavior and then try to

replicate the patterns of behavior observed (clones). The authors of [Bain and Sammut

(1996)] point out some disadvantages to the method of Behavioral Cloning. The first is

that the clones were brittle and difficult to understand. Cobot, A Social Reinforcement

Learning agent [Jr. et al. (2001)] is an agent that lives in an online community called

LambdaMOO [Jr. et al. (2001)]. Within the scope of the online community, it learns in

a manner similar to driving agent. Cobot watches other people take actions, watches

them interact and forms associations with this knowledge. Using the model it has built,

Cobot takes actions in the community, interacts with other people and further refines

its model based on the feedback it receives from other users.

The interface of the directive instructor is similar to the previous one where the
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communication takes place through the human interface module. Once the driving

simulator is started, the agent begins by performing randomly. The instructor, observ-

ing the agent, steps in by clicking on the simulator window. The world stops and awaits

an directive action as input from the human. The human now has one of three choices,

corresponding to the three actions of the agent, stay in place, left and right. The human

selects the correct action to be taken and the agent follows that directive. For all states

where there has been no human intervention, the agent takes actions autonomously as

defined by its policy. This process continues until the agent has learned to perform the

task autonomously. Figure 4.7 illustrates the various states of the driving world and

types of directive actions given by the optimal teacher.

Figure 4.7: Different Configurations of the Driving Domain and the Directive Actions
given by the Instructor.

4.3.2.1 Effect on the Learners

Q-learning

The Q-learning agent takes actions by following its policy, represented as π(st) =

arg maxaQ(st, at). It chooses the actions that is said to provide the maximum utility.

The Directive Instructor has the ability to overrule the action suggested by the agent’s
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policy, forcing it to take the teacher’s choice of action. The algorithm then uses the

reward acquired from taking the new action to update its Q-value. It is important to

note here that, the reinforcement now comes from a standard reward function. The

human only provides directive actions. In Q-learning, the agent does not actively

explore, however since the teacher has direct control of the agent, the agent can be

comfortably steered to parts of the driving world where there is relevant information

to be learned. Learning tends to be quicker when comparing the Directive Expert

with the Motivational Expert. This is attributed to the fact that the directive teacher

explicitly controls exploration while the motivator controls exploration implicitly via

the cumulative reward received.

R-Max

The R-Max Learner acquires the actions to be performed by computing the optimal

policy. As explained previously, this step is completed using Value Interaction. It

produces Q-values for every state-action pair and the agent acts by choosing the action

that has the maximum value/utility. The instructor has the ability to override the

action suggested by the policy and provide a more appropriate action for the current

state configuration. The agent uses the reward obtained from taking that action and

updates its list of known and visited states. During the next iteration, the recomputed

model will encode the new information given by the instructor. We know that the

R-Max learner initially builds an optimistic model and starts by actively exploring

it. However, when interacting with the Directive Instructor, this tends to be counter-

productive as agents sometimes explore parts of the state space where there is nothing

relevant to be learned. This in turn results in the instructor having to step in more

often just to correct the unnecessary exploration of R-Max learner.

Figure 4.8 compares the performance of the two learning algorithms, that learns

from a directional instructor, the task of safely driving a car on a highway with two

oncoming cars. The performance is calculated as a measure of the number steps taken

before the agent is optimal and the number human interactions (shown in the bracket)

that were required to reach an optimal policy.
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Figure 4.8: Number of steps taken by the learners to reach the optimal policy (with
Directional Instructor).

4.3.2.2 Effect on the Instructor

This experiment was run using myself as the human instructor. I found the interaction

with the Q-learner to be more engaging as the agent seemed like a student waiting to

receive orders from the teacher. The R-Max learner on the other hand tends to explore

actively and therefore required numerous interactions with me in order to correct its

behavior. Clearly the value of exploration is dependent on the type of information given

by the human. Another interesting observation was that when the expert is teaching

the agent, it is important for the agent to be a shown a negative reward. The reason

for this is that if the agent is acting optimally right from the start, it will always receive

high reward. It will think that all its actions are good because it doesn’t have a notion

of what is bad. Once the instructor purposefully shows a negative reward, it allows the

agent to differentiate states with good reward and those with low reward. The policy

computed by Q-learning or R-Max will then be able to better characterize the task.

4.3.3 The Associative Instructor

The Associative Instructor uses a novel approach to interact with an artificial agent. In

this form of interaction, the human has the task of linking/clustering states that have

similar properties, for example, states that require the same action to be performed.
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This method although subtle is often seen when humans interact and teach one another.

Consider the task of teaching a child to solve basic math problems. Let the number

of problems indicates the number of states and the 4 arithmetic operators indicate

the number of actions. During the course of interaction, one can imagine the teacher

telling the student “Use the same technique that you used to solve Problem 1”. The

teacher has now become an associative instructor. The teacher has indicated that the

current problem (state n) can be solved by the same arithmetic operation (action) that

was used to solve an earlier problem (state 1). The student now begins to forms links

across the problems in an attempt to understand their implicit similarities. Figure 4.9

illustrates the same analogy in the car driving domain. It shows three different states

of the world, all of which have one thing in the common: the agent can avoid a collision

if it goes right. For that reason, the instructor is mapping all the three simulator states

to a single cluster.

Figure 4.9: Different Configurations of the Driving Domain and the State Mapping
given by the Instructor.

Using this method of instruction, it would be possible to cluster large state spaces to

a smaller subset characterized by some common features. The human gives the input

using the interface module. A question that we would like to answer at this point:

“is it necessary for the expert to label every state to a cluster?”. The answer is no.
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We overcome this by introducing a notion of continuous clustering. To understand

this better, consider the following state transition - S1, S2, S5, S9, S12 and S28. At

state S1, the instructor activates the interface module and maps that state to cluster

1. After having done this, all following states are mapped onto cluster 1 until the

instructor accesses the interface module and indicates otherwise. In this manner, states

S2, S5, S9, S12 and S28 are sequentially linked to cluster 1 until the teacher activates the

interface. In the driving domain, a cluster is defined by the action to be taken and it

virtually contains a set of states in which the same action has to be performed. Using

this method a large number of states can be clustered with very little interaction from

the associative instructor. Intuitively, the instructor has converted the state space of

the driving domain to small subset of N clusters. We formally define π∗ as the policy

of Associative Instructor. In our case, π∗ consists of N cluster states each of which is

associated with a single action.

4.3.3.1 Effect on the Learners

Q-learning

The Q-learner uses its standard representation to learn the task. When the human

steps in, he enters a cluster number (say 2) to which the current state is to be virtually

linked. The underlying algorithm now makes note of the link as well as the action

taken (say right) in that state. Henceforth, cluster 2 is characterized by the right

action and all states in which the right action is to be performed is referenced to cluster

2. Algorithmically, this is achieved by replacing the Q-values of the agents policy, π with

Q-values of the instructors’s policy π∗. Initially the instructor’s policy will be a random

matrix, but it gets refined as the agent continues to take actions in the world. There

exists a two way communication between the two policies thats lasts long enough until

the agent can perform autonomously. As we have noted before, the Q-learner does not

actively explore and this has a direct effect on the different states visited. The learner

when interacting with associative instructor was able to perform well on small state

spaces, but as the driving world grew bigger with more oncoming cars, the Q-learning

with its poor exploration strategy was unable to help the instructor.
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R-Max

R-Max learner as expected assigns clusters similar to the Q-learner and explores the

state space in much more efficient manner. Large state spaces can be easily covered in

no time as the algorithm drives visits to new states and the instructor assigns clusters

to blocks of these states. Every move initiated by the associative instructors opens a

two way channel between the agent’s policy and that of the teacher. The states are

appropriately linked to clusters and the Q-values are modified in both policies. Value

Iteration is performed on this new information and the model produced encodes the

state assignments of the instructors implicitly in the form of Q-values. The R-Max

learner was found to converge quickly to the optimal policy.

Figure 4.10: Number of steps taken by the learners to reach the optimal policy (Asso-
ciative Instructor).

Figure 4.10 compares the performance of the two learning algorithms, that learns

from a directive instructor, the task of safely driving a car on a highway. The perfor-

mance is calculated as a measure of the number of collisions encountered before the

agent is optimal and the number human interactions that were required to reach an

optimal policy.
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4.3.3.2 Effect on the Instructor

This experiment was carried out with two human subjects both of whom were unaware

of this form of interaction. After providing the preliminary details, the humans played

associative instructors to the learning agents for about 3 to 4 mins. During this time,

they reported that it was very difficult to assign clusters to states by assigning nu-

merical values. They felt that it was better to express the same thoughts using verbal

commands, in a more socially engaging manner. They also reported that the R-Max

agent was able to utilize the information they provided better than the Q-learner.

4.3.4 Which Agent?, Which Instructor?

After having described three different modes of interaction, we now ask what type of

algorithm along with what type of instructor would be perfect to teach an RL agent to

drive a car on a highway. From the plots shown in the previous sections, the R-Max

learner seems to the better of the two learners and the Optimal Associative Instructor

seems to be the best form of teaching. The drawbacks with respect to the R-Max learner

is that it explores every part of the state space even if there is nothing important and

the associative instruction method seems to be a very less natural mode of interaction

as compared to rewards and actions. We now make a tradeoff between the best learner

and the most natural form of interaction - the Motivational Instructor with the R-Max

Learner.

In this study, we have extended the standard forms of human interaction to other

modes and instantiated it in a car driving simulator. We were able to relate the inputs

of a learning algorithm to natural modes of communication that humans are familiar

with. This completes the last aspect of HELP in this Thesis.
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Chapter 5

Conclusions and Future Work

In this Thesis we have discussed three case studies, each focusing on the different

dimensions of HELP:

1. A standard human-robot interaction framework using supervised learning (applied

on the Nao Humanoid robot) - Case Study 1.

2. A reinforcement learning algorithm that focuses on efficiently utilizing the hu-

man’s inputs and reducing the total interaction time - Case Study 2.

3. Varying the modes of human interaction beyond the standard protocols and study-

ing the effects on standard reinforcement learning algorithms - Case Study 3.

In our first case study we introduced a supervised learning framework where a human

provides demonstrations of a task through kinesthetic means (direct control over the

robot’s actuators). The robot using a supervised learning algorithm was able to learn

constrained reaching gestures. The Nao robot was able to generalize and solve the task

given different placements of the objects using a set of demonstrations from the human.

The second case study focused on the aspect of limiting the number of human

interactions with the robot. One can imagine that infinite interactions will allow the

robot to completely learn the task. In this study, we introduced a reinforcement learning

agent that learned a model of the world by making predictions. The role of the human

is to provide a trace (a trajectory from start to goal) that helps the agent correct its

mistakes and teaches it something new about the world. We guarantee that efficient

learning is possible with only a polynomial number of mistaken predictions by the

robot and only a polynomial number of interactions from the human teacher. This

work extended the previous protocol such that it can be applied to a wider class of
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problems. The system was instantiated in a simulator and a real robot experiment.

The results showed that the protocol is efficient as solving the Taxi task and can be

applied to a number of other domains.

In the third case study we extend the modes of human interaction and apply them

to two reinforcement learning approaches - model free (Q-learning) and model based

(R-Max) algorithms. The basic forms of input taken by these algorithms is states,

actions and rewards. We designed a system where we linked these inputs to natural

means of communication between humans. It was instantiated in a driving simulator

and we found the best learner was the model based R-max learner and the best teacher

was the Associative (state-clustering) Instructor.

During the course of these case studies, there were several challenges associated

with their functioning. Here we list some of the primary challenges with incorporating

human guidance as a part of learning protocols:

• Task complexity and representation

In many situations, the task by itself is very complex. For example, a task like

balancing on a rope, traversing uneven terrains etc. These tasks are often in

continuous domains, have a very large state space, inherent stochasticity and are

complex to learn when represented by conventional algorithms. In such tasks it is

important to find a representation of the task that can be easily interpreted and

learned by an artificial agent.

When considering the task, it is also important to take into account the limitations

of robot. The sensors and actuators of robots vary to a very great deal and

therefore it requires a careful analysis of the capabilities of the hardware before

assigning a task.

• Noisy human teachers

Human teachers in most cases act as noisy sources of data. They are inconsistent,

unreliable and are prone to errors. When using their inputs for learning, it is

important to take these factors into account. The algorithm must be robust to

noise and must be able to generalize the data provided by the humans. During
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the course of the studies, it was noticed that humans loose attention fast and

are impatient. The information they provide deteriorates as the number of in-

teractions with the agent increases. It is therefore essential that the human have

limited and yet informative interactions with the agent.

Sometimes the human may not know how to solve the task. The teacher might

also be in a position where they are unable to evaluate the performance of the

artificial agent. In these cases, the human cannot be considered to be a good

source of information to help the agent learn. As an alternative, if there is no

knowledgeable human present, the agent can resort to autonomous methods of

learning.

• Efficiency of the Interaction Language

The interaction language consists of the human mode of communication and the

learning algorithm used by the agent. They have a significant effect on agent’s

learning. The algorithm must be chosen such that it can learn and generalize over

the available representation of the task. Following this, the mode of interaction

must be chosen such that it provides sufficient information about the task, can be

provided by a human naturally and can be understood by the learning algorithm

(agent).

At this point, we say that HELP has significant advantages over conventional au-

tonomous approaches. Using HELP, we can extend prior work and design novel pro-

tocols by which artificial agents can learn complex tasks with the help of an informed

human. As part of future work, we can direct our research towards:

• Investigating further modes of interaction, utilizing more social cues that humans

are accustomed to (for example using verbal commands with emotions).

• Allowing the agent to actively interact with the human and requesting specific

information about the task that the agent feels will help it generalize better.

• Learning to generalize when taught multiple tasks from multiple teachers.
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• Transfer Learning - Exploring the ability to transfer the learned behavior of one

robot to another. This can have significant impact on the learning time in multi-

agent systems.

At the end, there is no definitive rule stating the best algorithm and the best mode of

interaction. The purpose of this research in HELP has been to explore new approaches

to the field of human-robot interaction and to provide a glimpse of the capabilities of

novel approaches that satisfy both efficient learning as well as a satisfied human.
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