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Abstract

This report describes a generalized apprenticeship
learning protocol for reinforcement-learning agents
with access to a teacher. The teacher interacts with
the agent by providing policy traces (transition and re-
ward observations). We characterize sufficient condi-
tions of the underlying models for efficient apprentice-
ship learning and link this criteria to two established
learnability classes (KWIK and Mistake Bound). We
demonstrate our approach in a conjunctive learning task
that would be too slow to learn in the autonomous set-
ting. We show that the agent can guarantee near-optimal
performance with only a polynomial number of exam-
ples from a human teacher and can efficiently learn in
real world environments with sensor imprecision and
stochasticity.

Introduction
Learning by Demonstration (LbD) is a powerful technique
for teaching a robot new behaviors without extensive pro-
gramming. A human, playing the role of the teacher, has the
task of effectively communicating the required behavior to
the artificial learning agent through various methods of inter-
action. An example of such a method is the apprenticeship
learning protocol (Abbeel and Ng 2005) for Reinforcement-
Learning (RL) agents that attempts to learn the dynamics of
the environment by observing a sequence of actions taken
by a teacher. The apprenticeship protocol has been used to
efficiently learn flat MDPs and linear MDPs. The KWIK
(Li, Littman, and Walsh 2008) or “Knows What It Knows”
framework shows that these domains can also be efficiently
learned in the autonomous setting. However, there exists a
large set of model classes in the Mistake Bound (MB) learn-
ing class (Littlestone 1987) that are not efficiently learnable
in an autonomous RL setting (e.g. conjunctions of n terms).
Another critical gap to be addressed in such LbD techniques
is the constant need for human intervention and the need for
a learning-time guarantee. We have developed a generalized
technique in Walsh et al. (2010) that expands the appren-
ticeship protocol to efficiently learn a wider array of model
classes. These classes include all KWIK-learnable classes
and all Mistake Bound (MB) classes. We characterize the

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

efficiency of learning by limiting the number of human in-
teractions required.

Exhibited Demonstration
Our demonstration is based on a conjunctive learning task
called the Taxi domain, as described in Diuk, Cohen, and
Littman (2008). Using a teacher’s help, the robot’s task is to
start from a random state, locate and navigate to an object
(passenger), pickup the object and manoeuver it to the des-
tination and drop-off the object at the goal. The object and
goal positions are chosen randomly from a set of 3 prede-
fined positions. We begin by describing the different com-
ponents used and the basic setup of the demonstration.

Our robot, shown in Figure 1 is constructed using a Lego
MindstormsTM kit. It had a standard dual-motor drive train
and a third motor controlling its “gripper” that descends over
the object and holds it next to the robot’s body, and also
raises up to “drop-off” the object. The object is a stan-
dard 2.2-inch Rubik’s Cube initially placed away from the
robot. The locations of the robot, the object and the goal
are identified and tracked using an overhead camera over a
40in× 40in flat platform. The discrete actions for the robot
allow it to move forward, backward, turn right, turn left, and
pick-up or drop-off the object (lower or raise the gripper).
For the pick-up action, which needs to be quite precise, the
atomic action has a subroutine that causes the robot to move
forward slightly and then, if its touch sensor is activated,
lowers the gripper. Thus, the action is only successful if the
agent is facing in the correct direction and near the object,
otherwise it just moves forward slightly. The laptop sends
these action commands to the robot and receives feedback
from the robot via Bluetooth.

Demonstrations are given by a human teacher in the form
of a trace. A trace is a sequence of states, actions and re-
wards obtained by executing the teacher’s policy from the
initial start state to the goal state. These traces are given
by the user controlling the robot directly from the laptop.
The robot acts autonomously for H steps according to its
own policy and, if at any point during the episode the robot
performs suboptimally, the user provides a trace at the end
of that episode. Therefore, in our protocol, the traces are
not given upfront, but are given when required based on the
teacher’s observation of the robot’s policy. This way the
learner observes samples of real world transitions and re-



Figure 1: The gripper robot with the colored tracking fidu-
cial.

wards collected by the teacher and uses this “experience” in
a traditional model-based RL fashion. In our implemented
system, we say that robot has learned the task if it is able to
complete the task twice on its own from random start states.

Algorithm Description
In the Taxi world the robot along with the help of a hu-
man teacher is required to learn the various conditions of
the task and the effects of its actions. Under the generalized
apprenticeship learning protocol, we show that this task can
be efficiently learned when a “Smart” human interacts with
a model-learning robot.

We first describe the state representation that we have
used for our task. Object-oriented MDPs (OOMDPs), as
described by Diuk, Cohen, and Littman (2008), are used to
represent the state space of the environment. OOMDPs are
made up of objects with attributes (e.g., their x, y position
coordinates) and predicates that must be defined in terms of
these attributes (e.g., On(A,B): A.y = B.y + 1). Actions
are described by condition-effect pairs such that in state st,
the condition (a conjunction over the predicates) that holds
(conditions may not overlap) governs which effect occurs.
The effects themselves describe changes to the objects’ at-
tributes. In our setup, using the OOMDP representation, the
attributes of the robot are its x and y coordinates and its ori-
entation θ. The predicates for the OOMDP conditions were
WallToLeft, WallToRight, WallBehind, WallInFront (all rela-
tive to the robot) as well as HasPassenger, and Passenger-
Reachable, and AtDestination. The OOMDP effects were
changes in the robot’s attributes and the status of the passen-
ger. The rewards of the domain were set as −1 per step and
0 for a successful dropoff at the correct location.

The dynamics of such an environment are learned us-
ing a model-learning framework that we call the Mistake-
Bounded Predictor (MBP) agent. The robot learner takes
actions in the world and learns the effects. Using those
effects, the learner builds a model of the world by mak-
ing predictions. At a high level, the MBP-agent learns in
manner similar to the agent described by Diuk, Cohen, and
Littman (2008) except that it does not actively explore and
uses a Mistake Bound model to learn the transitions. The
MBP-Agent, when asked to fill in transitions for conditions
it has not witnessed, predicts a “no change” transition (a
pessimistic outcome). This way the MBP learner never ac-

knowledges uncertainty, it believes whatever its model tells
it (which could be mistaken). While autonomous learners
run the risk of failing to explore under such conditions, the
MBP-agent can instead rely on its teacher to provide expe-
rience in more “helpful” parts of the state space, since its
goal is simply to do at least as well as the teacher. The MBP
robot learns a model of the world by making only a polyno-
mial number of mistaken predictions (Walsh et al. 2010).

The teacher helping the MBP robot learn a model of the
world, is a “Smart” human. In our protocol, a Smart human
is one who provides a Valid Trace. A Valid trace is defined
as the one in which the human teacher does better than what
the agent thought was best. It teaches the robot something
new about its world and helps the robot reach the desired
goal. Introducing a teacher into the learning loop in this
manner allows us to characterize the learning efficiency as
PAC-MDP Trace. This provides a polynomial bound on the
number of smart-human interactions required to guarantee
efficient learning (Walsh et al. 2010).

Conclusions
This report describes the implementation of our generalized
apprenticeship learning protocol in a real world environ-
ment. In our demonstrations, the robot was able to learn
the taxi task using only a single demonstration from the hu-
man teacher. We were able to guarantee efficient learning
with limited smart-human interactions and limited mistakes
by the robot. The challenges we faced were primarily related
to overcoming real world stochasticity and the ability to ef-
ficiently learn the conditions given the set of possible effects
for each action. As a part of future work, we would like to
extend the protocol to other learnability classes (combina-
tions of KWIK and Mistake Bound) and apply it to a num-
ber of real world domains. We are currently pursuing work
on apprenticeship learning in robotics and natural language
processing.
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