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Abstract— The field of robot Learning from Demonstration
(LfD) makes use of several input modalities for demonstrations
(teleoperation, kinesthetic teaching, marker- and vision-based
motion tracking). In this paper we present two experiments
aimed at identifying and overcoming challenges associated with
using teleoperation as an input modality for LfD. Our first
experiment compares kinesthetic teaching and teleoperation
and highlights some inherent problems associated with teleop-
eration; specifically uncomfortable user interactions and inac-
curate robot demonstrations. Our second experiment is focused
on overcoming these problems and designing the teleoperation
interaction to be more suitable for LfD. In previous work
we have proposed a novel demonstration strategy using the
concept of keyframes, where demonstrations are in the form
of a discrete set of robot configurations [1]. Keyframes can be
naturally combined with continuous trajectory demonstrations
to generate a hybrid strategy. We perform user studies to
evaluate each of these demonstration strategies individually
and show that keyframes are intuitive to the users and are
particularly useful in providing noise-free demonstrations. We
find that users prefer the hybrid strategy best for demonstrating
tasks to a robot by teleoperation.

I. INTRODUCTION

In real world scenarios, it is not possible to pre-program
robots with all the tasks they might need throughout their
operational life. Learning from demonstration (LfD) is a
paradigm in which robots are programmed by demonstrating
successful executions of a task [3]. We are interested in
developing LfD systems that are suitable to be used by
everyday people. There has been much work related to LfD
algorithms and representations but usability of these with
users who are unfamiliar with robotics and machine learning
has not been explored in depth. We aim to identify the
challenges that these methods pose to the user and propose
solutions.

There are various means to show such demonstrations. We
are particularly interested in kinesthetic teaching, in which
the users manually guide the robot and teleoperation, in
which they use a teleoperation device (see Figure 1). Both of
these are desirable since they overcome the so-called “cor-
respondence problem” and the resulting demonstrations are
restricted to the kinematic limits (e.g. workspace, joint limits)
of the robot. Moreover, extra hardware/instrumentation, such
as motion capture devices, is not necessary.

We first conduct a user study comparing kinesthetic
teaching and teleoperation, to understand how natural and
comfortable these input modalities are to different users and

(a) Kinesthetic Teaching (b) Teleoperation

Fig. 1. Input modalities of interest for demonstrations

how they compare with each other. We find that people
are partial towards kinesthetic interaction due to the small
learning curve, ease of use and accuracy of demonstrations.
However, teleoperation was still viewed positively.

Kinesthetic teaching requires that the robot and the user be
co-located and that the user can manipulate the robot. This
might not be possible if the robot is distant, the robot or
the environment is dangerous or the scale of the robot does
not permit it. This is when teleoperation becomes important,
and leads to our follow-up experiment aimed at improving a
teleoperation teaching interaction.

In previous work [1] we have proposed two novel interac-
tion strategies to improve LfD, (1) Keyframe demonstrations,
in which only the important robot configurations to complete
the task are shown in sequence. (2) Hybrid demonstrations,
the combination of trajectories and keyframes, allowing users
to provide both keyframe and trajectory information in the
context of a single demonstration. The intuition is that
keyframes are good for gross motions whereas trajectories
are good for non-linear and complex portions of a task. In
this work we show the particular benefit of these interaction
strategies in a teleoperation setting.

Our second experiment studies the effect of different
demonstration strategies on the LfD interaction, finding that
people prefer keyframes-only over a trajectory-only interac-
tion, and prefer the hybrid strategy over both.

We first describe, in Section II, some work related to
robot teleoperation and its application to LfD scenarios. We
then detail the platform and tasks used in our experiments.
In Section V, we present the design and results of our
first experiment on comparing kinesthetic and teleoperation
input modalities. We then introduce of the keyframe-based



demonstration strategies in Section VI and their evaluation
in Section VII.

II. RELATED WORK

In LfD, demonstrations are often represented as arm joint
trajectories and/or end-effector path [8, 12]. Some also con-
sider the position of the end-effector with respect to the target
object of the skill [4, 11]. Typically start and end points of a
demonstration are explicitly demarcated by the teacher. Most
studies subsample the recorded data with a fixed rate [2, 4].
Demonstrations are often time warped such that a frame-by-
frame correspondence can be established between multiple
demonstrations [12].

Keyframes have been used extensively in the computer
animation literature [18]. The animator creates important
frames in a scene and the software interpolates between
them. In the LfD setting, an earlier work [17] utilizes via-
points (similar to keyframes) which are extracted from con-
tinuous teacher demonstrations and updated to achieve the
demonstrated skill. A recent approach is to record keyframes
and use them to learn a constraint manifold for the state
space in a reinforcement learning setting [5]. In this paper
we consider both trajectory and keyframe representations.

Human-robot interaction (HRI) has not been a focus of
prior work on kinesthetic teaching, but there are a few
examples. In [20], kinesthetic teaching is embedded within a
dialog system that lets the user start/end demonstrations and
trigger reproductions of the learned skill with speech.

A modification to the kinesthetic teaching interface is
kinesthetic correction [6, 7], where the teacher corrects as-
pects of a learned skill in an incremental learning interaction
by using a subset of joints in subsequent demonstrations.

The teleoperation concept has been around for more
than 50 years, with the focus on dealing with delays,
information loss, instabilities, operator noise, telepresence
etc. [13]. However, there has also been some interest in
LfD with teleoperation. An earlier work, which describes
a skill learning method with HMMs for a manipulator, is
presented in [21]. Some other related work include [19]
in which a space humanoid learns a “reach-grasp-release-
recract” skill, [16], which extends trajectory segmentation
and time alignment from demonstrations obtained via a
telemetry suit and [14], which injects haptic information to
guide the user for better demonstrations. Whole body grasps
for a simulated humanoid is learned in [15] by forming
template grasps demonstrations via “keyframes”, which are
the start/end points of a demonstration and the points of
contact and loosing contact with the objects.

These methods do not explicitly concentrate on the user.
Some of the existing usability studies for teleoperation,
such as [10] which compares a novel hydraulic manipulator
control interface with the traditional joint-by-joint control,
concentrate on making task completion better/more efficient
but do not consider learning.

III. PLATFORM

We use the PR2 from Willow Garage and Sensable Phan-
tom Omni R© haptic device in our experiments. PR2’s right

(a) Box Close (b) Scoop and Pour

(c) Stacking (d) Cup and Saucer

Fig. 2. Tasks used in our experiments

arm is used which has 7 degrees-of-freedom (DOFs) and is
passively gravity compensated. The teleoperation device has
6-DOFs, which is mapped to the end-effector of the robot.
Force-feedback is disabled to eliminate lag and instabilities.

IV. EXPERIMENTAL TASKS

We have a total of four main tasks for users to teach the
robot, shown in Figure 2, all of which were designed such
that they are achievable with all the interaction modalities
and demonstration strategies. The tasks involve the use of a
single arm of the robot.

• Box Close: The goal of this task is to move the robot
arm such that it closes the lid of an open box.

• Scoop/Pour: A spoon is placed in the robot’s gripper and
the goal is to transfer as many coffee beans as possible
from a big bowl to a nearby smaller bowl.

• Stacking: The goal of this task is to move the robot
arm to grip a relatively slim block with a square cross-
section and then place it on top of another similar block.

• Cup/Saucer: A hemispherical block is placed on another
relatively thin rectangular block from its circular side.
The top block falls if the arm moves too fast or the
orientation deviates. The aim is to transfer these blocks
into a rectangular region by avoiding an obstacle.

We also have two practice tasks to help familiarize the
user with the abilities of the robot. One is called “Orient
and Place”. In this task, the robot holds an oblong prism
and the goal is to make this fit within a gap of two blocks
placed on the table. The gap is placed such that the user
needs to both manipulate the position and orientation of the
robot’s end-effector. The other practice task is “Peg in Hole”.
In this task, a vertical slim block should be grasped, inserted
through a horizontal hole, and then be placed back near its
original position.



V. EXPERIMENT 1: INPUT MODALITIES

In our first experiment, we compare Kinesthetic Teaching
(KT) and Teleoperation (TO) in an LfD setting with naı̈ve
users. The users are instructed to teach the PR2 robot
a set of tasks such that it is able to efficiently execute
them without any human intervention. The experiment is
designed to provide insight into the characteristics of these
two modalities and highlight the user’s comfort and the
robot’s task accuracy in using these.

In kinesthetic teaching (KT), the user interacts with the
robot by physically manipulating its end-effectors, as shown
in Figure 1(a) and in teleoperation (TO), the user, with the
help of the Phantom Omni haptic device, controls the robot’s
end effector from a distance. This interaction is shown in
Figure 1(b). In order to demonstrate, the user provides a
continuous trajectory of a task. We now briefly highlight the
method used by the robot to learn them, followed by the
experimental design and the results obtained.

A. LfD Method

When the user is demonstrating a particular task, the robot
is recording every motion that the user exhibits. The robot,
given a set of such task demonstrations, is required to process
them and learn a generalized model of the task. In order
to learn such a model, we choose a supervised learning
approach based on Gaussian Mixture Models (GMMs). It
has been previously used in similar LfD scenarios [9] and
found to be very useful.

We choose GMMs as they can be learned with a small
number of demonstrations, can be trained in interaction time
and are adept at learning cyclic tasks as well as point to
point tasks. In this method, the demonstrations are given to
the learner in the form of time-stamped end-effector poses.
These are first time-warped to ensure that each of them has
a similar time scale. After this pre-processing step, k-means
algorithm is run to cluster the data. The cluster means and
covariances are used as the initial values for the Expectation-
Maximization (EM) algorithm, which learns a GMM from
the data. In our study, we used a constant number of clusters
that was derived empirically (12 for Box Close and 18
for Scoop/Pour). The outputs of GMM are sub-population
means and covariances which constitutes the model of the
task. Given a time vector as an input, Gaussian Mixture
Regression (GMR) is used on this model to extract a set
of corresponding end-effector poses for the robot. These can
then be executed by the robot in order to reproduce the task.

B. Experiment Design

To compare the KT and TO input modalities, we designed
a within-subjects experiment where every participant taught
two tasks, Box-Close and Scoop/Pour, to the robot in each
of the modalities. We had 9 participants, 5 females and 4
males, all of whom were university students. Their ages
were between 23 and 32 with a median of 25. None of the
participants were experts in robotics or machine learning and
none of them had any experience with either modality in a
robot LfD setting.

Fig. 3. Box and whisker plots of survey replies for Experiment 1.

We now describe the experimental scenario and highlight
important aspects of the interaction. Each participant is first
introduced to the robot. Then, based on a counterbalanced
order, one of the input modalities is described to them.
They have a short period of time to become familiar with
the input modality and the robot by performing the “Orient
and Place” task during the practice session. They are then
asked to demonstrate one of the two experiment tasks (also
counterbalanced). The user initiates the demonstration by
saying “New demonstration”, manipulates the arm to make
the robot perform the task and finishes by saying “End
of demonstration”. The robot then learns a model of the
task using GMMs and the user is given the option of
reviewing what the robot has learned. The user, based on
their assessment of robot performance, can decide to give
another demonstration or move on to the next task. After
teaching both tasks in the first modality, this protocol is
repeated for the second modality. After completing the two
tasks in the two input modalities, the user is asked to fill out
a survey.

We asked the users to rate the ease of use, enjoyability and
accuracy of the method and the extent to which they thought
they would improve at using the modality, given time with a
set of 7-point Likert-scale survey questions. We also asked
an open-ended question to get the overall impression from
the user. The question was phrased as “If you bought this
robot to use at your house, which modality would you prefer
and why?”. In addition to the survey, we also compare KT
and TO with respect to the task-oriented metrics: duration of
demonstrations; and success of the learned task model.

C. Survey Results

We use Wilcoxon signed rank test to evaluate the survey
(see Figure 3). A summary of the results obtained is given
below.

Kinesthetic teaching was rated easier: The median answer
to the ease-of-use-of-modality question was 6 for the KT
case, whereas it was 5 for the TO case. Note that the answers
are significantly different from one another (p = 0.05). We
expected this result due to the fact that people are more
accustomed to a kinesthetic type of teaching, i.e., it occurs
naturally in human-human interactions. Moreover, with this
interaction method, the users have more control over robot’s
joints, can more easily adjust their perspective to see more



of the workspace and be more “situated”.
Users enjoyed both methods: Both methods were rated

highly on the enjoyability scale, thus we were unable to show
a significant difference in enjoyability.

Users tend to think that they can give more accurate
demonstrations with the kinesthetic teaching method: Al-
though this is not significant, we can see a trend (p = 0.077).

Majority preferred kinesthetic: According to the open-
ended question responses, a majority of participants (7 of
9) preferred KT over TO, with 6 users citing their reason
being its “ease” of use.

D. Task Metrics

In addition to the survey results we look at task-specific
success rates and demonstration durations. We define the end
state of the Box Close task (Open or Closed) and the amount
of coffee beans transferred for Scoop/Pour as the success
metrics.

The Box Close task was completed successfully by al-
most all participants (except 1) using both modalities. In
the Scoop/Pour task demonstrations, participants transferred
more coffee beans with KT than TO (p < 0.05 in paired
t-test). However we note that this is not always reflected in
the learned tasks. There are two probable causes for this.
First, users may provide subtle but useful assistance (e.g.
rocking the spoon) during kinesthetic teaching since they
are more accustomed to this form of interaction. However,
these are smoothed out by learning. Second, an artifact of our
experiment, we did not control the distribution of the coffee
beans before executing the task. After a user demonstration,
a dent is left in the distribution and the learned task will try
to scoop from around the demonstrated region but will not
get as many coffee beans due to the dent.

The participants were faster at providing demonstrations
with Kinesthetic for Scoop/Pour (p < 0.05) than Teleopera-
tion. For Box Close, people were faster on average but not
significantly (p = 0.09). This is partly due to 2 outlier users
who took some time to realize they needed to move some of
the robot joints (shoulder joints) that were away from the end
effector in KT modality. Overall KT leads to more successful
demonstrations in a shorter amount of time.

We would like to highlight here that on observing the
demonstrations given by the participants using teleoperation,
we noticed the users frequently repositioning the robot
arm to complete the task accurately. These characteristics
affect the learned model as they are assumed to be part
of the task demonstration. The robot, in its learned model,
tends to replicate these extraneous movements. In real-world
scenarios we would like to overcome this shortcoming.

VI. NEW DEMONSTRATION STRATEGIES

The results of the previous experiment showed us that
there is a gap between Kinesthetic and Teleoperation in
terms of usability in an LfD setting, with kinesthetic being
easier to use and leading to more successful demonstrations.
However, kinesthetic teaching requires that the robot and
the user be co-located and that the user can manipulate the

robot. This might not be possible if the robot is distant, the
robot or the environment is dangerous or the scale of the
robot does not permit it. Thus, we are interested in novel
demonstration strategies aimed at improving a teleoperation
teaching interaction. We explore two new ways for teachers
to demonstrate tasks: keyframe demonstrations and hybrid
demonstrations.

A. Keyframe Demonstrations

In Keyframe demonstrations (KF), the robot records only
specific configurations (i.e. keyframes or poses) that are
marked by the user. These configurations are stored as a
sequential set of discrete end-effector configurations. In this
strategy, the interaction proceeds as follows, the user initiates
the demonstration by saying “New demonstration”, moves
the arm to specific configurations while making the robot
perform the task and says “Record Pose” at each important
point to record that configuration. The user finishes the task
by saying “End of demonstration.”

The resulting data from this interaction is a sparse trajec-
tory (as opposed to a continuous trajectory used in Experi-
ment 1). Given these sets of discrete points, the robot replays
the demonstration by sequentially splining through each of
them. An example of this is shown in Figure 4 under the
title “keyframes”. Importantly, we generate time information
for the sparse trajectory by taking into account the distance
between adjacent keyframes and assume a constant average
velocity between them. In our implementation, if the user
forgets to give keyframes for the start and/or the end position
of a task demonstration, they are added automatically.

Learning is slightly different than the trajectory case, but
the space is the same. Again k-means is run as the first step,
but now the number k is chosen to be the maximum number
of keyframes across all demonstrations provided for a task.
Then a GMM is learned in the same way as the trajectory
version. To generate the task, the GMM sub-population
means are traversed by splining between them. We took such
an approach since the GMM sub-population means obtained
from the keyframe version will be of different nature than the
ones obtained from the trajectory version. With keyframes,
it is more likely to be a transition between two trajectory
segments whereas with trajectories it is more likely to be a
mid-point of a trajectory segment [9].

B. Hybrid Demonstrations

In hybrid demonstrations (HY), the user is allowed to
give both keyframes and trajectory segments in their task
demonstrations (illustrated in Figure 4). Trajectory segments
are the same method used to provide demonstrations in
Experiment 1. Starting and ending a demonstration and
recording a keyframe is same as before. In the trajectory
demonstration, at any point, the user can say “Start Tra-
jectory” to initiate it and “End Trajectory” to finish the
portion. In the hybrid strategy, the user has the ability to mix
and combine keyframes and trajectories in any manner. For
example, a task could involve a sequence of 2 keyframes,
1 trajectory sequence and another 3 keyframes. For such



Fig. 4. Left and middle columns depict the trajectory and keyframe
strategies. All of the columns are possible demonstrations with the hybrid
strategy. The dots correspond to start/end points or keyframes, the solid lines
to user demonstrated trajectories and the dashed lines to splines between
keyframes.

Fig. 5. Results for choice questions on the survey for Experiment 2. The
p-values are obtained with the Friedman’s test when comparing all methods
and the Wilcoxon signed rank test when comparing just TR and KF.

a hybrid demonstration, the robot will replay the trajectory
portions and keyframes as before and will transition between
the two using splines.

Each segment in a hybrid demonstration is learned sep-
arately. If there are multiple demonstrations, the first step
for learning is to match segments. This is done by treating
starting and end points of portions as keyframes, and then do
keyframe learning on these. The portions are then matched
according to the clusters that their start/end points belong
to. For generating motions each segment is again treated
separately and the resulting trajectories are merged together.
There are still open questions as how to handle multiple
demonstrations if segment types do not match which is out
of scope of this paper.

VII. EXPERIMENT 2: IMPROVING TELEOPERATION WITH
NEW DEMONSTRATION STRATEGIES

In our second experiment we evaluate the various demon-
stration strategies described in the previous section in the
context of improving teleoperation. We have two novel
strategies (Keyframes(KF) and Hybrid(HY)), to complement
the standard Trajectory demonstrations (TR). We hypothesize
that the new strategies will enhance the user interaction with
the teleoperation device both in terms of “ease of use” as
well as providing better demonstrations. This experiment is
setup to first compare the individual utility of keyframes and
trajectory strategies and then compare them both against the
hybrid strategy.

A. Experiment Design

We conducted a within-groups study where every partici-
pant did all the 3 strategies and performed all 4 tasks with
potential task repetitions in the hybrid strategy. We had 12
participants, all male, from the campus community (different
from the ones who participated in Experiment 1). Their ages
were between 18 and 47 with a median of 21.5. Only one
user was a first year Ph.D. student in the Robotics program.
The others were not experts in any related field and none of
them had used a teleoperation device before.

We used all the tasks mentioned in Section IV with a few
differences. We made the Box Close task harder by requiring
users to make the lid “click” (by pushing it down) after
closing it. Since some of the tasks in this experiment require
grasping, the users had the ability to close and open the robot
gripper with verbal commands. Moreover, the robot makes
a sound after each verbal command for confirmation.

We note that some tasks can be more efficiently solved
using specific or a combination of strategies. For example,
the stacking task can be better suited for demonstrations
using the keyframe strategy as it requires only a set of linear
translations, whereas the Cup/Saucer task requires the use of
trajectories as they provide control over the speed of the arm.
Without speed control, the hemispherical block has more
tendency to fall down.

Each user demonstrates 2 tasks per strategy. The tasks
differed across TR and KF. Then one task from TR and one
task from KF is chosen for HY (e.g. (TO: T1 T2)→(KF: T3
T4)→(HY: T1 T4) where Tx denotes one of the four experi-
mental tasks). We partially counterbalanced the strategy and
the task order. Half of the experiments started with TR and
the other half with KF. Note that there were (3×2)×12 = 72
interactions which are distributed evenly among the related
conditions (e.g. 24 per demo, 18 per task, 6 per demo and
task combination).

The experiment starts with the participant getting in-
troduced to the robot. Our experience from the previous
study indicated that users needed more practice with the
teleoperation modality. We added a short session of “free
form” practice before beginning the experiment in which
users moved the arm around freely and were asked to put
the end-effector in various canonical configurations (e.g.
horizontal, vertical). They performed the Orient and Place
task after this to complete the practise session.

After the practice session, they are introduced to one of the
strategies (either KF or TR, picked from a counterbalanced
order). They are familiarized with the strategy using the Peg
in Hole task. They are then asked to demonstrate two of
the four tasks (also counterbalanced) using the instructions
specific to that strategy. Once completed, they repeat the
same procedure for the other modality using the remaining
two tasks. The user is then asked to complete a survey based
on these two strategies. They are introduced to the hybrid
strategy afterwards and asked to demonstrate two of the
four tasks, one from each modality. At the end of this, the
user completes the last survey with questions on the hybrid



strategy.
Using data gathered from the above protocol, we compare

the three demonstration strategies based on the survey results
(Likert scale questions and open-ended responses) as well as
characterizations of the demonstrations data provided with
the different strategies.

B. Survey Results for Keyframe, Trajectory, and Hybrid

In Figure 5, we present the results of our survey ques-
tions.1 None of the replies are statistically significant be-
tween the strategies, so we cannot draw any differential
conclusions. There was positive bias in people’s answers
across all the strategies. For example, all of them were rated
enjoyable, with medians being close to the upper limit. This
is in part due to the novelty effect of interacting with a
humanoid robot, but the positive bias also indicates that our
interaction strategies were acceptable to the participants.

Participants subjectively reported that all of the inter-
actions were easy. However, this was not our observation
during the experiment. It is difficult to manipulate a robot
with a teleoperation device, and people clearly struggled
at times. Nevertheless, the perceived ease is a positive for
teleoperation and the interaction methods and shows that the
participants were comfortable with the design and use of
these strategies.

Users also thought that the methods were accurate. This is
interesting since the keyframe method does not seem intuitive
at first, but it received very similar perceived accuracy ratings
compared with the more intuitive trajectory method. The
improvement results indicate that the users think that they
could do better with more experience, which is especially
true for such a teleoperation scenario.

C. Open-ended Responses on Keyframe vs. Trajectory

In an open-ended response question, we asked people to
directly compare keyframes and trajectories.

In their responses, 9 out of 12 users preferred keyframes
over the trajectories mode. Six of the participants who chose
keyframes mentioned giving more “efficient” demonstrations
and “not recording any mistakes”. Two of the users admitted
that they were not very proficient with the teleoperation
device and felt more comfortable with the keyframe mode.
All three users who chose trajectory mode complained about
“having to give many poses” with the keyframe strategy;
showing some concern for the loss of information with
keyframes.

D. Analysis of Keyframe vs. Trajectory Demonstrations

The average number of keyframes per task was 10.25
(σ = 3.77). Table I shows the mean and the standard
deviation of distance covered and the average time taken
to complete a task in each of the modes. There seems to
be an inverse relationship between the time taken and the

1Only two of the questions were asked for HY. This was to shorten the
survey to minimize fatigue. Also, since we did not counterbalance HY, it is
biased, people inherently improved and became more accurate by the time
they completed this.

TABLE I
MEAN (AND STANDARD DEVIATION) OF DEMONSTRATION DURATION

AND DISTANCE.

Trajectory Keyframes Hybrid
Duration(seconds) 50.69 (26.26) 72.45 (30.36) 59.84 (31.13)
Distance(meters) 3.65 (1.46) 2.12 (0.26) 3.08 (1.3)

Fig. 6. Comparison of Trajectory (Red) and Keyframe Demonstrations
(Blue). The left image shows a desirable trajectory for closing the box lid.

distance covered. We first analyze these metrics between
trajectories and keyframes. We see a significant difference
for the demonstration duration (t(23) = −2.67, p = 0.014)
and a significant difference for distance traveled by the robot
end-effector between trajectories and keyframes (t(23) =
4.80, p < 10−4). The latter result is due to the fact that
the robot moves nearly in a straight line between keyframes
but trajectories include the unnecessary motions of the user.

These results indicate that the participants spent more time
positioning the arm and thinking about the positions. This in
turn resulted in a good selection of keyframes as the arm
completed the task by traversing a smaller distance, making
it more efficient.

We would like to point out here that the accuracy of
the trajectories as perceived by the participants and as
obtained by the quantitative measures can be misleading
as the participants were more interested in task completion
rather than providing clean and noise free demonstrations.
The trajectories had a lot of hand jitter and unnecessary
motions that would be very hard to learn from. However, on
reviewing the demonstrations obtained in the keyframe mode,
we find that they were noise free (i.e. little or no unnecessary
keyframes) which is much better suited for input to a learning
algorithm. This attribute is highlighted in Figure 6, showing
an example keyframe and trajectory demonstration of the
Box Close task.

Additionally some tasks were hard to perform using the
keyframe mode. For example, the Scoop/Pour task and the
Cup/Saucer required fine control as well as speed control of
the arm. We can therefore say that the keyframe mode was
not sufficient to solve all the tasks efficiently.

E. Survey and Open-ended Responses on Hybrid mode

On comparing hybrid with the other two techniques, the
results were encouraging. Figure 5 shows that hybrid is
rated easy and enjoyable. People not only thought it to be a
valuable addition to the interaction modes, many participants



were able to figure out efficient ways to combine keyframes
and trajectories. The last column of figure 5 is people’s
response to questions asking them to rate how much they
prefer the HY method over the TR and KF. People were
positive towards the hybrid mode with a median of 5 for
HY vs TR and median of 6 for HY vs KF and all users
were at least neutral (4) towards HY.

Our second open choice survey question was designed to
compare the hybrid mode with the other two modes and
provide reasons for their choices. 11 of the participants
thought hybrid was a valuable addition and they preferred
it over keyframes and trajectory modes. We would like to
highlight two characteristics mentioned by the participants
in the survey question. 6 of the participants preferred the
Hybrid mode due to the efficiency of the interaction and 5
of the participants highlighted the ability for precise control.
Specifically several mentioned how it is easier to demon-
strate gross motions using keyframes and fine motions using
trajectories. One user mentioned “a combination keyframes
and trajectories” would be a valuable addition before being
informed about the hybrid strategy.

F. Analysis of Hybrid mode Demonstrations

In our final analysis of the hybrid strategy, we highlight
some of the choices the participants made, specifically how
they choose keyframes and trajectories depending on the type
of task. We observed that the keyframe mode was primarily
used for gross motions from location A to B, for linear
motions or when only the end point mattered. The trajectory
mode was primarily used when the task required non-linear
motions or fine control over the speed. An example scoop
and pour demonstration can be seen in figure 7. It can be
seen that scooping and pouring is done with trajectories and
going from one bowl to the other with keyframes.

We analyze the choices of the users in the hybrid mode
for specific tasks.

• In the Cup/Saucer task, 5 out of 6 participants that did
this task with hybrid used the trajectory mode to move
the cup because it gave them more control over the
speed.

• In the Scoop/Pour task, 5/6 used trajectory for scoop-
ing, 2/6 for transferring, and 5/6 for pouring.

• In the Close the Lid task, 3/6 users moved under the
lid with the keyframe method and all of them used
trajectory mode to close the lid. 1 of the users then
used the keyframe method to push the lid to its place.

• In the Stack the Block task, 4 people used keyframes
to move to the first block, 2 to go to the next and 3 to
stack. Among the users, one of them did this task with
only keyframes, which is arguably the best option.

In general, we observed that people tried to take advantage
of keyframes and trajectories wherever appropriate. Partic-
ipants show a trend of choosing trajectory for fine control
and keyframes for gross motion. We argue that with more
practice, users can develop even better strategies to more
efficiently achieve the tasks with the hybrid strategy.

Fig. 7. An example hybrid demonstration for the scoop and pour task.
Dashed lines represent keyframe portions and continuous lines represent
trajectory portions. Different colors correspond to different demonstration
segments.

VIII. DISCUSSION

Our first experiment showed that users preferred kines-
thetic teaching over teleoperation as it is more intuitive and
more situated. They were still positive towards teleoperation.
The users did not have any previous experience with the
PR2 robot nor have they ever had any experience with a
teleoperation device. This makes the already steep learning
curve of teleoperation even steeper. Taking this into account,
we were able to show that within the span of an hour, the
users were becoming increasingly adept at interacting using
the teleoperation device and were able to demonstrate the
tasks relatively well.

Our introduction of keyframes and the hybrid strategy
made the LfD interaction with teleoperation more suitable.
Participants quickly figured out the concept of keyframes and
learned how and when to provide them. It took users a couple
iterations of looking at the robot replay their demonstrations
at most to understand the steps necessary to correct the
position of the keyframes. We can see that the time taken for
providing keyframes was greater than trajectories, shown in
Table I. We attribute this to two reasons; one, the users spent
time to think where the poses must be given and to position
the robot accurately and two, they spent time saying the
phrase “Record Pose” and waiting for the robot to confirm.
This in fact supported our hypothesis that users were ready
to spend that extra time in providing keyframes because the
robot demonstrations were less prone to noise.

Furthermore some participants, with continued interac-
tions, were able to gain insight into the properties of
keyframes as envisioned by us. Specifically, they were able
to understand that keyframes assume constant speed between
them and therefore do not encode any velocity related
information. Two participants specifically mentioned that
“keyframes are not good when speed control is required”.
This only goes to show how naive users using a few
interactions were able to grasp the details of the interaction
strategies.

Given these characteristics of the participants in our study,
we highlight an aspect that was common to most of the users.
Our results indicate that the users concentrated more on



task completion rather than providing good demonstrations,
although they were encouraged to give smooth demonstra-
tions. They perceived the robot being accurate during the
replays, however their trajectories often contained noisy,
unnecessary and imprecise portions which makes learning
difficult. We believe that this was an artifact of not showing
the participants the learned model. Thus, integrating this
work with online learning is planned for future work.

IX. CONCLUSIONS

We found that teleoperation is harder than kinesthetic
teaching for naı̈ve users of LfD. Users found the kines-
thetic modality to be more comfortable and better suited
to provide accurate demonstrations. We presented two novel
demonstration strategies for teleoperation to make it easier to
provide “good” demonstrations and compared these against
the traditional trajectory method. Our first strategy was
based on keyframes that helps to avoid errors and noise
in trajectories. Experiments with participants show that this
interaction strategy is much better suited for learning from
teleoperation. Additionally, we combine the keyframes with
continuous trajectories in a hybrid manner. This combination
provides a suitable and intuitive interface to efficiently solve
most tasks.

A link with a video of the key contributions
of our work can be found at http://www.
cc.gatech.edu/social-machines/video/
KLfD-Teleop-AAAI-FSS12.mov
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