
Exploration from Demonstration for
Interactive Reinforcement Learning

Kaushik Subramanian
College of Computing

Georgia Tech
Atlanta, GA 30332

ksubrama@cc.gatech.edu

Charles L. Isbell Jr.
College of Computing

Georgia Tech
Atlanta, GA 30332

isbell@cc.gatech.edu

Andrea L. Thomaz
Electrical and Computer

Engineering
University of Texas at Austin

Austin, TX 78701
athomaz@ece.utexas.edu

ABSTRACT
Reinforcement Learning (RL) has been effectively used to
solve complex problems given careful design of the prob-
lem and algorithm parameters. However standard RL ap-
proaches do not scale particularly well with the size of the
problem and often require extensive engineering on the part
of the designer to minimize the search space. To alleviate
this problem, we present a model-free policy-based approach
called Exploration from Demonstration (EfD) that uses hu-
man demonstrations to guide search space exploration. We
use statistical measures of RL algorithms to provide feed-
back to the user about the agent’s uncertainty and use this
to solicit targeted demonstrations useful from the agent’s
perspective. The demonstrations are used to learn an ex-
ploration policy that actively guides the agent towards im-
portant aspects of the problem. We instantiate our approach
in a gridworld and a popular arcade game and validate its
performance under different experimental conditions. We
show how EfD scales to large problems and provides conver-
gence speed-ups over traditional exploration and interactive
learning methods.

1. INTRODUCTION
Reinforcement Learning (RL) [36] is the field of research

focused on solving sequential decision-making tasks modeled
as Markov Decision Processes. Researchers have shown RL
to be successful at solving a variety of problems like com-
puter games (Backgammon [39], Atari games [26]), robot
tasks (soccer [34], helicopter control [1]) and system op-
erations (inventory management [16]); however, in general,
standard RL approaches do not scale well with the size of the
problem and often require extensive engineering on the part
of the designer to minimize the search space. The reason
this problem arises is that RL approaches rely on obtaining
samples useful for learning the underlying structure with-
out always using smart methods to explore the problem. In
RL literature this is related to balancing the exploration-
exploitation tradeoff - a central problem in Reinforcement
Learning. Existing methods either use a fixed (uniformly
random) policy or value-based metrics [6, 35] that either
result in redundant exploration and/or have prohibitively

Appears in: Proceedings of the 15th International Conference
on Autonomous Agents and Multiagent Systems (AAMAS 2016),
J. Thangarajah, K. Tuyls, C. Jonker, S. Marsella (eds.),
May 9–13, 2016, Singapore.
Copyright c© 2016, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

expensive sample complexity. In this work we tackle the
problem of smart exploration in RL, by using human in-
teraction. We present a model-free policy-based approach
called Exploration from Demonstration (EfD) that serves
to bias an RL agent’s exploration to cover the search space
effectively.

In designing an exploration policy for sequential decision-
making problems, it is important to help the agent reach
parts of the search space that are necessary to model in or-
der to solve the problem. These include guiding the agent
towards stochastic regions of the problem or regions of high
reward for example. To facilitate exploration in these parts
of the domain, we utilize statistical measures of the learning
algorithm. We pose the optimization function as a linear re-
gression problem and use relevant measures [27] to help iden-
tify influential regions. Such an approach has the advantage
of learning to explore the problem from the agent’s perspec-
tive while taking into account the underlying representation,
the RL algorithm as well as the problem definition. We
solicit interaction from an oracle (human or simulated) to
acquire demonstrations that lead the agent towards these
influential regions. We instantiate our approach on a grid-
world and a popular arcade game (Frogger) and show how
our policy-based approach is able to solve long horizon prob-
lems using exploratory demonstrations while outperforming
traditional exploration and interactive learning methods.

2. RELATED WORK
There has been extensive work related to exploration in

RL. With regard to the approach presented in this paper,
we broadly categorize the existing work into two aspects -
automatic exploration in RL and interactive machine learn-
ing. We present details on the related work in these fields
to provide context to our approach.

2.1 Automatic Exploration in RL
Rmax [31] is an automatic approach introduced to per-

form exploration using the idea of optimism in the face of un-
certainty. The approach performs well in practice, however
R-max scales exponentially in the number of state variables
which makes it intractable for sufficiently large problems.
There are several value-based methods like UCB [6], its
variants [24, 7], Bayesian approaches [11] and model-based
methods [35, 29, 18, 19], studied in the context of multi-arm
bandits, that perform effective exploration by maintaining
statistics about changes in the value function and the num-
ber of times state-action pairs have been visited. While suc-

cessful in smaller domains, these approaches run into sample
complexity issues when dealing with high-dimensional long
horizon domains we aim to solve.

A smart exploration method was proposed by Gehring
and Precup [14] which uses the residual (TD error) as a re-
ward for a Q-function, whose implied policy is then used for
exploration. The intuition behind this approach being that
state-action pairs that have high residuals should be visited
and tried more often. This method relies on stable estimates
of the residual. We adapt a version of this approach in our
experiments. Using an internal reward function [9] is an in-
teresting approach to exploration in RL. In this method a
user is required to design a reward function for skill learning
which is often non-trivial. While the authors provide em-
pirical results on small-sized domains, the idea presented is
promising and warrants further exploration. An approach
closely related to work presented in this paper is that of
Active RL [13] where the authors model the problem as a
POMDP. They model the sensitivities of the policy to the
unknown transition and reward function and build explo-
ration strategies focusing on these aspects of the problem.
This method relies on using Newtons method to solve the
problem till convergence (which cannot be guaranteed) and
they need to solve the MDP numerous times to test the sen-
sitivity. The work most closely related to our work is one
authored by Akiyama et al. [3] where they leverage concepts
of least squares approaches to guide exploration in policy it-
eration methods. The main difference is that the approach
they design requires the problems to have certain properties
with respect to the reward distribution and as such it is not
directly comparable.

2.2 Interactive Machine Learning
There exists a wide variety of work in the field of Inter-

active Machine Learning, namely Learning by Demonstra-
tion [4], Imitation Learning [30], Policy Shaping [17] and
TAMER [22]. Work by Knox and Stone [22, 23] has shown
that a general improvement to learning from human feed-
back is possible if it is used to directly modify the action
selection mechanism of the Reinforcement Learning algo-
rithm. Although both approaches use human feedback to
modify an agent’s exploration policy, they still treat human
feedback as either a reward or a value. In our work, we use
human interaction to directly learn a policy.

Active Reward Learning [10] has been used to learn a re-
ward function from human feedback and use that in an RL
algorithm. They use the human to provide input on task ex-
ecutions - a score to the execution - that they then smooth
using Gaussian Processes and Bayesian Optimization. Re-
ward function design in general is known to be a hard prob-
lem as there are always possibilities of loops in the learned
policy. A paper similar in theme to the work in this paper is
one on active imitation learning by state queries [20]. The
authors present an approach where the human interacts with
the agent by giving a optimal action in a specific state or by
saying that the state is bad. The query-states are chosen by
a query-by-committee approach based on Bayesian Active
Learning. In their approach, they assume the learner has
access to a simulator of the MDP and also do not explicitly
handle the case where humans provide a bad state response.

In other works, rather than have the human input be a
reward shaping input, the human provides demonstrations
of the optimal policy. Several papers have shown how the

policy information in human demonstrations can be used
for inverse optimal control [28, 2], for teaching [8], to seed
an agent’s exploration [5, 38], and in some cases be used
entirely in place of exploration [21, 33]. DAgger [32] is no-
regret online learning approach used for supervised learning.
The method learns from training data and then executes the
learned model. For every mistake made, the human demon-
strator provides more examples in that space. These exam-
ples are appended to the training set and the learner is re-
trained. While it is not strictly an RL approach, it is mainly
providing examples useful for a supervised learner. We note
here that all of the methods presented here require/assume
the human provides optimal information which is not nec-
essary in our approach.

3. BACKGROUND AND PRELIMINARIES
Reinforcement Learning (RL) defines a class of algorithms

for solving problems modeled as a Markov Decision Pro-
cess (MDP). An MDP can be represented as a tuple M =
〈S,A, T , R, γ〉 with states S, actions A, transition function
T : S×A 7→ Pr[S], reward functionR : S×A 7→ [Rmin, Rmax],
and discount factor γ 7→ [0, 1]. A policy π : S 7→ Pr[A] de-
fines the probability of selecting an action in a state. For
a given MDP, a Q-function Qπ(s, a) represents the expected
long-term reward of taking action a in state s, and follow-
ing policy π thereafter. Mathematically, the Q-function is
computed as

Qπ(s, a) = R(s, a) + γ
∑
s′

T (s, a, s′)
∑
a′

π(s′, a′)Qπ(s′, a′)

(1)
The optimal action-value function isQ∗(s, a) = max

π
Qπ(s, a),

and the solution to an MDP is any optimal policy π∗, which
maximizes the expected reward for every state.

In this paper we use Q-learning with linear function ap-
proximation [37]. The Q-function is represented as a linear
function of state-action features, Q(s, a) = φ(s, a)T θ. As-
suming φ(s) are the features used to represent the states
in an MDP, we obtain φ(s, a) by duplicating the features
φ(s) for all actions and only activate the ones for the ac-
tion under consideration. For example if |A| = 4, φ(s, 3) =
[0,0, φ(s),0]T . A set of transitions made by the RL agent
from a starting state to any terminal state comprises a single
episode. For every transition made by the agent in the form
〈s, a, r, s′〉, where r is the reward obtained for taking action
a in state s and transitioning to s′, the Q-learning algo-
rithm updates its weight vector, θ using first-order gradient
methods in the following manner:

δ = r + γmax
a′∈A

[φ(s′, a′)T θ]− φ(s, a)T θ

θ = θ + α δ φ(s, a)
(2)

Here α 7→ [0, 1] is the learning rate. The error, δ is the
Temporal Difference (TD) error (also loosely referred to as
Bellman error). The algorithm, while not guaranteed to
converge in the general case, is found to perform well in
practice.

Exploration in RL is commonly achieved using two meth-
ods: ε-greedy and softmax action selection. In ε-greedy ac-
tion selection, exploration is performed by uniformly sam-
pling a random action with probability ε and the current
best action (greedy action selection) with probability 1− ε.
The choice of ε is left to the designer. In some cases, a de-

cay schedule is used where the value of ε is decayed over
time as the agent gains more domain experience. Softmax
action selection takes a more informed approach to explo-
ration. Instead of sampling a random action, the actions
are weighted according to their respective Q-value estimates
and sampled from the resulting distribution. The most com-
mon implementations use a Boltzmann distribution in the

following manner: πB = eQ(s,a)/τ∑|A|
a=1 Q(s,a)/τ

where τ is a positive

temperature parameter. A higher temperature value results
in a more uniform distribution while a lower value results in
greedy action selection.

4. APPROACH
In this section we describe an interactive approach to ex-

ploration in reinforcement learning using statistical proper-
ties relevant to the underlying learning algorithm. We out-
line properties of exploration policies, statistical measures
useful for this purpose and how these measures can be used
to solicit interaction that drives the agent’s exploration.

4.1 Exploration Policies
For sequential decision-making problems, exploration poli-

cies are used to guide the agent to different parts of the
search space so as to obtain good estimates of the value
function while covering as much of the state-action space as
possible. There are a number of factors affecting this explo-
ration such as the dynamics of the domain, the sparsity of
rewards, the size of the state-action space and the problem
horizon (steps to goal). In addition to these properties, a
subtle but important aspect of exploration that is implicit in
existing methods is that exploration policies are not strictly
stationary. As the agent gathers more information about
the world, the exploration policy changes to accommodate
the learned model.

Traditional methods, as explained earlier, explore using a
variety of methods ranging from a uniformly random policy
to value-based heuristics. These methods are prone to re-
dundant exploration and (in some cases) expensive sample
requirements. The idea of inefficient exploration also applies
to methods involving human interaction, as human data is
often limited to specific regions of the search space while re-
lying on the learning algorithm to generalize effectively. To
account for the characteristics of exploration policies while
overcoming the limitations of existing methods, we present
a policy-based approach to exploration. We solicit demon-
strations based on the agent’s uncertainty about its model
to guide the agent to cover the search space more efficiently.
For a given MDP, model uncertainty arises from a combi-
nation of stochastic elements in the domain (transition and
reward function) and insufficiently explored states and ac-
tions. Keeping this in mind, we investigate properties of
relevant RL algorithms and select measures that serve to
characterize the model uncertainty with the goal of design-
ing effective exploration policies.

In our work we use Q-learning with linear function ap-
proximation which uses gradient methods to perform opti-
mization. The loss function used is akin to to minimizing
the squared loss of the Bellman error [15]. Using this infor-
mation, we use statistical properties of analogous methods
that have been well-studied, like linear regression or least
squares, to understand the impact of each data point or ob-
servation on the learning agent’s model.

4.2 Statistical Measures
In order to understand the agent’s model uncertainty, we

review statistical analysis of linear regression methods [27]
to find measures useful for our purposes. In linear regression
problems, input observations can be scored by their influ-
ence to measure the effect they have on the learned model. A
high influence score points towards observations that merit
further investigation. Influence is computed as a combina-
tion of two measures: Leverage and Discrepancy. Leverage
is a measure of how far a specific observation is from the
convex hull of known observations. It helps recognize out-
liers. Discrepancy is related to how much an observation
contributes towards model error. From the perspective of
exploration in RL, these measures help to identify parts of
the state-action space that have not been explored (using
Leverage) and observations that lead to high model error
(using Discrepancy). A key insight into using these type of
measures for RL is that the data the agent trains on does
not contain any outliers as every observation made by the
agent, by interacting with the domain, is relevant to solving
the MDP. This indicates that there is essentially no data
to be discarded. We hypothesize that an RL agent that
actively explores the observations that have high leverage
and high discrepancy, i.e. overall high influence, will lead to
more efficient exploration to solve the MDP.

In order to utilize these statistical measures we explic-
itly set up the problem as a linear set of equations that
correspond to the standard form, Xβ = y. An RL agent
is solving the MDP to optimize the function, Q(s, a) =
R(s, a) + γmax

a′
Q(s′, a′) where Q(s, a) = φ(s, a)T θ. It is

straightforward to see that the left-hand side of the opti-
mization function, Q(s, a) or φ(s, a)T θ takes the place of
Xβ and the right-hand side forms y. The input data for
our approach comes from transitions of the RL agent as it is
attempting to solve the problem. The state-action features,
φ(s, a) observed by the agent during transitions are used to
populate the rows of the data matrix, X (n × k for n ob-
servations and k features). Given this formulation we define
the statistical measures useful for exploration.

4.2.1 Leverage
Leverage is a measure useful to determine how well the

state-action space has been covered as it detects outliers
in the data. Given independent variables, X, we compute
leverage, h using the hat matrix, H as follows [27]:

H = X(XTX)−1XT (3)

The hat matrix maps the vector of dependent variables (y)
to the vector of fitted values, ŷ = Hy. The diagonal elements
of the hat matrix, hii are the leverages, which describe the
influence each dependent variable value has on the fitted
value for observation i. Leverage values are in the range
[0, 1]. A high value indicates that the observation is an out-
lier and vice versa. A fixed threshold parameter is used to
detect the presence of outliers. We use 0.5 as the cut-off to
indicate if an observation is an outlier. For RL problems, a
high leverage indicates that the respective state-action pair
is an outlier, i.e. is novel and has not been visited often.

Typically RL algorithms require large amounts of data to
solve the MDP which makes it infeasible to store all the
transitions in a batch. In addition to that, computing lever-
age can pose computational issues as it requires taking the

inverse of a matrix of size k × k (for k features) which can
be very large for high-dimensional problems. To address the
memory and computational concerns, we use the Sherman-
Morrison formula to incrementally compute the inverse of
XTX. The formula is stated as follows:

(A+ xTx)−1 = A−1 − A−1xTxA−1

1 + xA−1xT
(4)

where A−1 is initially set to 1
δ
I (identity matrix of size k ×

k) and δ is a small positive number, say 1e−4. Using this
computation, the leverage of an instance x of data matrix
X can be computed as xA−1xT .

4.2.2 Discrepancy
This measure captures the observations that the learning

algorithm is unable to model thus leading to large errors.
Discrepancy is computed using the externally studentized
residual [27]. These residuals are obtained by computing
the residual for an observation and dividing it by the stan-
dard error (or standard deviation). This is done to reduce
the effect of the variance in the errors and allow residuals to
be compared. An externally studentized residual is one that
computes the residual by taking into account the difference
in the learned model with and without the observation in
question. For observation i, the discrepancy, ti can com-
puted as:

ti =
ei√

MSE(i)(1− hii)

MSE(i) =
(n− p)MSE − e2i

(1−hii)

n− p− 1

(5)

Here MSE represents the mean-squared error, n is the num-
ber of samples, p the number of independent variables, hii is
the leverage for observation i and ei is the TD error for sam-
ple i. MSE(i) is the mean squared error for the model based
on all observations excluding sample i. We note that MSE
is typically computed using batch data which is computa-
tionally infeasible to store in large scale RL domains. It does
not lend itself to incremental computations due to the max
operator in the RL optimization function (when computing
MSE and ei). We circumvent this problem by storing a
batch data matrix, update it with new observations using
a (FIFO) sliding window and compute the required param-
eters [12] online. In analysis of linear systems, when the
absolute value of the externally studentized residual, |ti| is
greater than 2, the corresponding observation is considered
an outlier that needs further investigation. Henceforth we
use the term discrepancy to represent the externally studen-
tized residual.

Using these measures the RL agent can identify obser-
vations in the MDP that require further exploration. We
now describe how we use them to solicit demonstrations for
exploration.

4.3 Demonstration Query
For every transition made by the RL agent, it computes

the leverage and discrepancy and compares it to the respec-
tive thresholds. If either threshold is exceeded, we identify
the corresponding observation as influential. To learn more
about that observation and reduce its influence, we learn a
policy using guidance from a person or a simulated oracle
that drives the agent towards these observations.

Consider the state associated with an influential observa-
tion the agent transitioned into as s+. To encourage ex-
ploration to s+, it is important to bridge the gap between
regions of low influence to those of high influence. Intuitively
this can be explained by the idea that state-action pairs that
have low influence are likely to have been frequently visited
and sufficiently explored. Therefore designing a policy from
parts of the state-action space that the agent knows well and
visits often to those with high influence is most likely to en-
courage exploration to and around s+. As explained before,
leverage provides a way to identify data points that have
been visited often. To acquire the necessary low influence
data point that is to be connected to s+, we review every
observation i, in the current episode and compute the cor-
responding leverage: hi = φ(si, ai)A

−1φ(si, ai)
T . We then

compute the mean leverage, µh from these observations and
find the state, si that corresponds to the data point with
the closest leverage,

argmin
i
|hi − µh| (6)

Once the low and high influence observations have been iden-
tified, we collect exploratory demonstrations either from a
person or a simulated oracle using a Graphical User Inter-
face (GUI) for the domain. When the algorithm queries for
demonstrations, the GUI highlights the states that need to
be connected by demonstrations. Using the GUI, the user
can a) provide demonstration(s), b) choose to ignore the
query and c) stop interacting with the algorithm altogether.
The simulated oracle provides demonstrations by following
the shortest distance path between the queried states. There
are no inherent assumptions made about quality or quantity
of demonstrations. The only requirement is for the user to be
knowledgeable about the MDP dynamics to help the agent
navigate in the domain. For every demonstration provided,
we learn an oracle exploration policy πO using standard su-
pervised learning algorithms and sample an action from this
policy when the agent decides to explore.

We note here that when soliciting demonstrations, the fi-
nal state in the demonstration may be different from the
query state requested by the agent. This is likely to be
observed in domains with stochastic elements and/or non-
playable characters. While there is no straightforward way
to ensure a certain state is visited in an MDP, our exper-
imental results show that the policy learned using our ap-
proach is effective at driving the agent towards influential
parts of the MDP as it continues to actively request user
demonstrations.

4.4 Action Selection
The oracle exploration policy, πO defines a policy that

when followed is likely to guide the agent from regions of
low influence to those of high influence. However using such
a policy alone to explore in and of itself can be insufficient
for the purposes of RL where the goal is to arrive at the
optimal policy as soon as possible. Additionally the nature
of exploration is non-stationary and as such if there are lim-
ited demonstrations, the agent is less likely to explore the
set of influential regions in the MDP. To account for these
properties, we design our exploration policy as follows:

πE ∝ (πO + πL) · πB (7)

where πO is the oracle exploration policy, πL is the leverage

Algorithm 1 Exploration from Demonstration (EfD)

repeat(for each episode):
Initialize s
repeat(for each step of episode):

Compute πE (Eqn. 7)
Choose a (ε-greedy action selection using πE)
Take action a, observe r, s′

Store transitions 〈s, a, r, s′〉
Update θ and A−1 (Eqn. 2 & 4)
Compute leverage and discrepancy (Eqn. 3 & 5)
if high influence at s then

s+ ← s
Compute starting state, si (Eqn. 6)
Query demonstrations from si to s+

Update θ and A−1

Self-play for Ts (includes parameter updates)
end if
s← s′

until s is terminal
Decay ε

until end of learning

value ∀a ∈ A for state s and πB represents the Boltzmann
exploration policy. We note that the leverage values lie in
the range [0, 1] and for our purposes can be used as proba-
bilities. A leverage value closer to 1 will have the effect of
sampling the corresponding action more often. Intuitively
πE represents the exploration policy that chooses between
the oracle demonstration or the leverage values, weighted
by the softmax Q-values of the actions in the state. This
exploration policy allows the agent to reach regions of high
influence using human demonstrations or select actions with
high leverage while actively seeking the goal. We use πE in
an ε-greedy fashion to facilitate exploration in our approach.

4.5 Exploration from Demonstration
We now outline our approach with all the pieces defined

using Algorithm Block 1. The objective of Exploration from
Demonstration (EfD) is to learn the optimal policy using
RL while ensuring the agent actively explores regions of the
state-action space that have a potentially large influence on
the learned model.

EfD as described in Algorithm Block 1 has a tendency to
query the user demonstrations repeatedly as high influence
regions are often in close proximity to others. This results in
the leverage and discrepancy thresholds being crossed very
often within the same episode. In order to make EfD more
user-friendly we include a predefined fixed time period, Ts
where the agent executes self-play without any user queries.
During self-play Q-learning and leverage parameters (θ &
A−1) continue to be updated. We note that EfD does not
modify any theoretical guarantees of the methods used as
Q-learning is an off-policy algorithm. This completes the
description of our approach.

5. EXPERIMENTAL SETUP
To validate the performance of EfD we conduct experi-

ments on a gridworld and popular arcade game domain and
compare our method to several baselines. In this section
we describe the domains used in our experiments and the
relevant baselines.

Slippery

Slippery

Slippery

Isolated

Isolated

(a) Gridworld (b) Frogger1x

Figure 1: A snapshot of the two domains used in our exper-
iments.

5.1 Domains
We use two domains to empirically highlight the perfor-

mance and properties of EfD. We represent these domains
as MDPs in the following manner:

Gridworld. This domain is designed by adapting the spec-
ifications outlined in [14]. We implement an 18×18 discrete
grid (Figure 1a) with four deterministic actions that move
the agent up, down, left and right. The goal is to reach
the top right corner of the grid. For every step taken, the
agent accrues a step cost of −1 and a reward of 0 at the goal
state. The blue shaded regions represent slippery squares. If
the agent transitions out of a slippery square (both into an
unshaded square or another slippery square), the reward is
uniformly distributed in the interval [−12,+10]. The gray
shaded regions represent isolated squares. Any transition
that leads the agent into this region from an empty square
has a 0.1 probability of success. Once inside, movements
within the isolated region as well as those leading out are
not restricted. Transitions leading into the bounding walls
keeps the agent’s state unchanged. An episode starts with
the agent randomly placed in the grid and stops when the
agent reaches the goal. We used identity features to repre-
sent the state space.

Frogger. In the game of Frogger (Figure 1b), the agent’s
goal is to navigate from the bottom to the top of the grid
while avoiding the cars and water pits (shown as dark squares
in the top row). The cars move in straight lines in their in-
dividual rows either going left or right. The direction is
randomly chosen at the start of an episode and stays fixed
until the episode ends. The intermediate gray row(s) rep-
resent safe zones for the agent, i.e. no cars and water pits.
The agent has 5 actions: 4 directional actions and a no-op
action. Within an episode, the transitions are determinis-
tic. The reward function is +1000 for reaching the goal,
−100 for dying (directly hitting a car, crossing over a car,
falling into water) and 0 everywhere else. An episode starts
with the agent in a random position in the bottom row and
stops when the agent dies or reaches the goal. The state
space of the domain consists of the agent’s position along
with the position and direction of travel of cars in the grid
and represented using binary features. The Frogger domain
is particularly interesting as it lends itself to easy scalabil-
ity. The domain can be made more complex, i.e. have a
longer solution horizon, by increasing the number of inter-
mediate rows between the start and goal positions. We use
this property to show how our method scales with the size of

the domain. We refer to the domain configuration in Figure
1b as Frogger1x and use Frogger2x to indicate doubling the
number of rows used in Frogger1x and Frogger4x to indicate
a quadruple version of the same.

5.2 Baselines
We implement five baselines in our experiments and com-

pare their performance to EfD. Uniform random exploration
and softmax exploration comprise two of the baselines. The
remaining three are defined as follows:

Learning from Demonstration + RL. In this method
we acquire demonstrations of optimal behavior from peo-
ple or a simulated oracle. These demonstrations are used
to learn a policy using supervised learning methods (in this
case logistic regression). We use this policy as the seed pol-
icy to initiate RL. We execute the algorithm on the domain
and report the results.

Exploration by TD error. This approach draws from
insights highlighted in this paper [14] and learns an ex-
ploration policy based on TD error. In our implementa-
tion we use the current estimate of TD error (the absolute
value) as the reward for a given state-action pair and learn
a Q-function using this information. A policy is extracted
from the Q-function using softmax action selection. The Q-
function learned in this process plays the role of driving the
agent towards parts of the state-action space that have high
TD error in order to gather more information in those re-
gions. We note that this approach is not strictly consistent
with standard MDP assumptions as the reward function is
non-stationary (TD error is constantly changing). While we
counteract this effect to a certain degree by using a small
learning rate and a decaying exploration parameter, our ex-
periments show that performance was not greatly affected
by this characteristic.

Exploration by Leverage. We derive an exploration pol-
icy by computing the leverage on data consisting of visited
state-action pairs. For any given state, we compute the
leverage for all actions, normalize the results and use it as
a distribution from which we sample exploratory actions.
As explained earlier leverage captures outliers in the data,
which in this case would represent actions, for a given state,
that have not been tried often. This way by sampling from
normalized leverage values for all actions in a state, the agent
is more likely to sample new actions. This baseline is useful
to signify the importance of exploratory demonstrations.

6. EXPERIMENTS AND RESULTS
We implement EfD for the chosen domains and highlight

the results achieved along with several tests that provide
insight into EfD’s performance under different experimental
conditions.

6.1 Using Leverage and Discrepancy for Ex-
ploration

In this experiment we use the gridworld (Figure 1a) to
show the utility of leverage and discrepancy as useful mea-
sures to guide exploration. The gridworld is suitable for
this purpose due to several design choices made. Firstly
the isolated (gray) regions in the grid represent parts of the

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Leverage heat map

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(b) Discrepancy heat map

Figure 2: Leverage and discrepancy heat maps generated
from random exploration of the gridworld domain.

state-space that are hard to reach and thus unlikely to be
explored by the agent. Secondly the non-deterministic re-
ward function (represented by slippery blue patches on the
grid) pose some difficulty to the learning algorithm in accu-
rately modeling the underlying value-function. We conduct
two experiments to show the individual contribution of the
chosen exploration measures.

To highlight the utility of leverage, we perform a random
walk in the gridworld for 50 episodes. In each episode, the
agent starts in a random position and moves randomly until
the goal is reached. For every step taken, features of visited
state-action pairs are used to form the data matrix X. Using
X, we compute the hat matrix H (see Equation 3) and use
that to derive the leverage h(s, a) for every state-action pair.

In Figure 2a, we plot a heat map using max
a

h(s, a) ∀s ∈ S.

The heat map shows the correspondence between the regions
of high leverage (h ≥ 0.5) and hard to explore regions of the
gridworld (isolated gray regions). Leverage, as explained
earlier, is used to identify outliers in the data. In this case
the heat map presents the gray region as outliers which ne-
cessitates the need for further exploration. Analogously this
effect can be seen in other more complex high-dimensional
domains where it is hard to entirely cover the state-action
space. Leverage, as shown here, captures regions that the
learning agent is unable to reach often.

While leverage captures how often state-action pairs have
been visited, it does not capture details about the transition
function, reward function and RL algorithm’s learned model.
Here we show how discrepancy is useful for this task. We
perform Q-learning with linear function approximation on
the gridworld domain for 50 episodes. We set γ = 0.99,
α = 0.1 and ε = 1.0. We store all the transitions 〈s, a, r, s′〉
from the sampled episodes and compute the mean squared
error using the learned weight vector θ (refer Equation 5).
The mean squared error is used to derive the discrepancy
t(s, a) for every state-action pair.

In Figure 2b, we plot a heat map using max
a
|t(s, a)| ∀s ∈

S. The heat map shows the correspondence between the
regions of high discrepancy (|t| > 2) and the slippery regions
in the gridworld. Intuitively this is to be expected as the
TD error in these areas is likely to have large magnitude
and high variance and that warrants further investigation.
We note that the bright red patch in the top right corner of
the heat map signifies the high residual obtained at the goal
and its adjoining states. Using this heat map as a threshold
for exploration would draw the agent towards the slippery
patches and the goal until the learning algorithm captures
the underlying model and the residual decreases.

Figure 3: Performance of EfD and baselines on the Frog-
ger game domain of varying sizes (1x, 2x and 4x) averaged
over 10 trials. The numbers in parenthesis are the average
number of input user demonstrations.

The experiment serves to highlight the roles played by
leverage and discrepancy and how they guide the agent’s
exploration. Leverage guides the agent towards state-action
pairs that have not been visited often during learning and
the discrepancy guides the agent towards regions of the do-
main which the learning algorithm has difficulty modeling
the value-function.

6.2 EfD for Frogger
In this experiment we instantiate the EfD algorithm in

the Frogger domain for different sizes of the problem, Frog-
ger 1x (10 rows), Frogger 2x (18 rows) and Frogger 4x (34
rows). We perform Q-learning with linear function approx-
imation with γ = 0.99, α = 0.0006 and εstart = 0.8. We use
the following decay schedule for the exploration parameter:
ε = εstart×N0

(N0+Ep#)
where N0 is the decay rate and Ep# is the

current episode number. We set N0 as 1500, 2500 and 5000
respectively for the three versions of Frogger. The threshold
parameters for EfD were fixed with the leverage threshold
set at 0.5 and discrepancy threshold at 2. The self-play time
period for EfD was set to Ts = 500, Ts = 2000 and Ts = 5000
steps respectively for the three versions of Frogger. The tem-
perature for softmax Boltzmann exploration was set to 50.
We acquired demonstrations from two users who were both
familiar with the dynamics of the game. We received any-
where from 5 to 30 demonstrations depending on the size of
the domain that was being tested. Demonstration time in
total was no more than 10 to 15 mins. The human policy
was learned using logistic regression with a learning rate of
0.01. We plot the results of this experiment along with com-
parative baselines in Figure 3. We see that EfD converges
to the optimal policy faster than the baselines using a small
number of demonstrations. To ease readability we plot only
a subset of the baseline methods in Figure 3 as the perfor-
mance of the baselines (TD-error, Leverage and Softmax)
were consistent across the three sizes. The performance is
further improved over the baselines as the size of the do-
main is increased. This is explained by highlighting how
EfD queries and utilizes user demonstrations. In the initial
stages of learning, the user is queried with demonstrations
leading to states in the rows closer to the bottom row. As
the agent gains experience, demonstrations are requested for
states further up. In this process, the agent incrementally
explores the rows until it finally reaches the goal in the top

(a) Agent queries the user for
demonstrations to the high-
lighted position based on the
leverage threshold.

(b) Agent queries the user for
demonstrations to the high-
lighted position based on the
discrepancy threshold.

Figure 4: Examples of the types of states queried by the
agent during EfD when applied to Frogger2x (18 rows).

row. Such an incremental learning approach makes it eas-
ier for agent to reach the goal as well as easier for the user
to provide demonstrations. This also explains why LfD (+
RL) does not perform as well as EfD for larger grids. The
size of the domain limits the search space covered by the
human demonstrations as well as prohibits optimal demon-
strations from start to the goal. EfD performs better by
using the RL algorithm’s inductive bias as well as the under-
lying representation to acquire incremental demonstrations
that are most useful to the agent. These results were consis-
tent across both users. The TD-error and leverage baseline
methods while more informed do not perform as well due to
their redundant exploration. An interesting observation of
EfD from our experiments is that, by using thresholds for
the statistical measures, with sufficient experience the agent
automatically ceases to request demonstrations. In which
case, we observe that the agent has enough information to
model the Q-function and solve the MDP.

6.3 Types of States Queried
Here we take a closer look at the types of states queried

by the agent during EfD. We present results from the Frog-
ger2x domain which consists of 18 rows from start to goal.
Figure 4a is an example of an agent query, based on the lever-
age measure, where a demonstration is required between the
frog near row 8 to the highlighted grid position near row
4. An observation that exceeds the leverage threshold indi-
cates that the agent has not visited that state-action pair
often and therefore requires input demonstrations. Such a
query points towards how EfD gathers information about the
state-action - decomposing the domain in smaller regions.
Demonstrations are requested from known regions to un-
known regions and often they are in close proximity to each
other. Providing a demonstration for such a query would
be easier than providing optimal demonstrations from start
to end in this domain. Figure 4b is an example of an agent
query based on the discrepancy threshold. We note that
the highlighted position is around a car near row 6 which is
a terminal state with reward −100. The discrepancy here
exceeded the threshold as the agent’s current model was un-
able to make an accurate prediction of the Q-value of an
action in this state and thus requested a demonstration.

We would also like to highlight a few uncommon queries

that provide interesting insights into the method. In some
cases the agent requests demonstrations from a state where
the frog is closer to the goal to states where the frog is
further away. From the perspective of solving the MDP,
using such a policy would encode suboptimal information,
however for policy-based exploration, it only serves to get
a better estimate of the Q-function. Note that exploration
is carried out by combining the human policy with softmax
policy (Section 4.4) which therefore ensures the agent select
actions that are more likely to lead it towards the goal. For
some queries we observe that the agent’s position on the
grid remains the same for both start and final states, while
the position of cars is different. With respect to EfD, these
are different states and therefore it is a valid demonstration
query. This shows how EfD makes demonstration queries by
taking into account the underlying representation.

6.4 Effect of Input Demonstrations and Thresh-
old Parameters

In this experiment, we test the sensitivity of EfD to the
quality of demonstrations used to learn the exploration pol-
icy. While we do not place any assumptions on the quality
of demonstrations, we analyze the degrees to which perfor-
mance is affected as the quality of demonstration is varied.
We use the simulated oracle for this experiment under dif-
ferent demonstration noise conditions: Oracle0.1, Oracle0.3,
Oracle0.5. An oracle with noise 0.1 (Oracle0.1) will pro-
vide the required demonstration 90% of the time and 10%
of the time, take random actions. The results of this ex-
periment are summarized in Table 1. As evidenced by the

Frogger1x (5) Frogger2x (12) Frogger4x (23)

Oracle0.0 2560 ± 150 3194 ± 230 4430 ± 410
Oracle0.1 2752 ± 321 3470 ± 527 4893 ± 564
Oracle0.3 2648 ± 469 3304 ± 699 5218 ± 866
Oracle0.5 5102 ± 932 6329 ± 875 7688 ± 1043
ε-greedy 6570 ± 120 8555 ± 212 10000 ± 405

Table 1: EfD performance as a function of the quality of in-
put demonstrations from a simulated oracle in the Frogger
domain. The values represent the number of episodes taken
by each method to converge to the optimal policy. The num-
bers in parenthesis are the number of input demonstrations
the simulated oracles are limited to. We include results from
the ε-greedy baseline for comparison. The results are aver-
aged over 10 trials.

table, the performance of EfD varies based on the quality of
input demonstrations. Relative to Oracle0.0 (optimal ora-
cle demonstrations), Oracle0.1 and Oracle0.3 achieve simi-
lar performance. This is explained by the fact that for most
query demonstrations there exist multiple ways to reach the
desired state and neither path is any more optimal than the
other from the perspective of exploration. By introducing
noise in the oracle demonstrations, they can potentially ex-
plore more states than Oracle0.0 which can include both
low and high influence observations. However this has the
effect of increased variance in performance for noisy simu-
lated oracles. Oracle0.5 (with 50% random action selection)
has large variance in its performance but still outperforms
ε-greedy uniform random exploration.

In our experiments, we set the leverage threshold at 0.5
and the discrepancy threshold at 2. Changes to these param-

eters directly affect the number of demonstrations queried
by the agent which affects the amount of exploration carried
out by the agent. Higher values results in fewer demonstra-
tion queries and as a result most of the exploration is carried
out by the agent autonomously. On the other hand lower
thresholds result in frequent queries which has the effect of
learning an exploration policy close to a uniform policy. In
general, from tests in our domain, we find that setting lever-
age threshold to 0.5 and discrepancy threshold anywhere in
the range [2, 6] provides the best results.

7. DISCUSSION AND CONCLUSION
Here we highlight the benefits of using a policy-based

approach for exploration in RL in the context of EfD. When
faced with large domains with sparse rewards and long hori-
zons, a policy-based approach is less vulnerable to the large
sample requirements of value-based methods as the informa-
tion acquired from a single demonstration allows the agent
to extends its range of exploration over multiple timesteps.
Additionally such a method does not concern itself solely
with reward information. The statistical measures used in
EfD (leverage and discrepancy) focus on different aspects of
the MDP which allow the algorithm to function well across
a wider class of problems. This is in contrast to value-based
methods which rely on large samples of reward informa-
tion to estimate the uncertainty in the value function often
made complicated in sparse reward and long horizon do-
mains. Also EfD does not require optimal demonstrations to
learn but instead demonstrations that serve to connect two
regions of the agent’s choice. As these demonstrations are
used for exploration, they can be potentially noisy (which
may in some cases help the agent).

In this paper we presented a model-free policy-based ap-
proach called Exploration from Demonstration (EfD) that
performs interactive exploration for RL algorithms. Our
method adapts statistical measures of linear regression to
capture aspects of an MDP that are important to explore
and model in order to learn the optimal Q-function. We
highlight the properties of these measures in an instructional
gridworld MDP and empirically test our approach on a pop-
ular arcade game under different experimental conditions.
We show how EfD scales to larger problems and outper-
forms baselines using only exploratory demonstrations while
placing very few requirements on the quality and quantity
of input data. Our method is particularly suited to prob-
lems which have a long horizon and sparse rewards as well
as those domains where optimal demonstrations are hard to
acquire. In the future we would like to extend EfD to learn
a model of the MDP, thus allowing the algorithm to request
examples from arbitrary states rather that waiting to tran-
sition to those areas. Another interesting avenue for future
work is the idea of extending EfD to work with more data
efficient RL algorithms like Least Squares Policy Iteration
[25].

Acknowledgments
We thank the reviewers for their helpful comments in im-
proving the paper. This work is supported by ONR grant
No. N000141410003.

REFERENCES
[1] P. Abbeel, A. Coates, and A. Y. Ng. Autonomous

helicopter aerobatics through apprenticeship learning.
International Journal of Robotics Research,
29(13):1608–1639, 2010.

[2] P. Abbeel and A. Y. Ng. Apprenticeship learning via
inverse reinforcement learning. In Proc. of the 21st
ICML, 2004.

[3] T. Akiyama, H. Hachiya, and M. Sugiyama. Efficient
exploration through active learning for value function
approximation in reinforcement learning. Neural
Networks, 23(5):639 – 648, 2010.

[4] B. Argall, S. Chernova, M. Veloso, and B. Browning. A
survey of robot learning from demonstration. Robotics
and Autonomous Systems, 57(5):469–483, 2009.

[5] C. Atkeson and S. Schaal. Learning tasks from a single
demonstration. In Proc. of the IEEE ICRA, pages
1706–1712, 1997.

[6] P. Auer. Using confidence bounds for
exploitation-exploration trade-offs. Journal of
Machine Learning Research, 3:397–422, Mar. 2003.

[7] S. Bubeck, R. Munos, and G. Stoltz. Pure exploration
in multi-armed bandits problems. In ALT, volume
5809 of Lecture Notes in Computer Science, pages
23–37. Springer, 2009.

[8] M. Cakmak and M. Lopes. Algorithmic and human
teaching of sequential decision tasks. In AAAI
Conference on Artificial Intelligence, 2012.

[9] O. Şimşek and A. G. Barto. An intrinsic reward
mechanism for efficient exploration. In Proceedings of
the 23rd International Conference on Machine
Learning, ICML ’06, pages 833–840. ACM, 2006.

[10] C. Daniel, M. Viering, J. Metz, O. Kroemer, and
J. Peters. Active reward learning. In Proceedings of
Robotics: Science & Systems (R:SS), 2014.

[11] R. Dearden, N. Friedman, and S. Russell. Bayesian
Q-learning. In Proc. of the 15th AAAI, pages 761–768,
1998.

[12] T. G. Dietterich. Machine learning for sequential data:
A review. In Structural, Syntactic, and Statistical
Pattern Recognition, pages 15–30. Springer-Verlag,
2002.

[13] A. Epshteyn, A. Vogel, and G. DeJong. Active
reinforcement learning. In ICML, volume 307 of ACM
International Conference Proceeding Series, pages
296–303. ACM, 2008.

[14] C. Gehring and D. Precup. Smart exploration in
reinforcement learning using absolute temporal
difference errors. In International conference on
Autonomous Agents and Multi-Agent Systems,
AAMAS, pages 1037–1044, 2013.

[15] M. Geist and O. Pietquin. Algorithmic survey of
parametric value function approximation. IEEE Trans.
Neural Netw. Learning Syst., 24(6):845–867, 2013.

[16] I. Giannoccaro and P. Pontrandolfo. Inventory
management in supply chains: a reinforcement
learning approach. International Journal of
Production Economics, 78(2):153–161, 2002.

[17] S. Griffith, K. Subramanian, J. Scholz, C. L. Isbell,
and A. L. Thomaz. Policy shaping: Integrating human
feedback with reinforcement learning. In Neural

Information Processing Systems 26, pages 2625–2633,
2013.

[18] T. Hester, M. Lopes, and P. Stone. Learning
exploration strategies in model-based reinforcement
learning. In Proceedings of the 2013 International
Conference on Autonomous Agents and Multi-agent
Systems, AAMAS ’13, pages 1069–1076, 2013.

[19] T. Hester and P. Stone. TEXPLORE: Real-time
sample-efficient reinforcement learning for robots.
Machine Learning, 90(3), 2013.

[20] K. Judah, A. P. Fern, T. G. Dietterich, and
P. Tadepalli. Active imitation learning: Formal and
practical reductions to i.i.d. learning. Journal of
Machine Learning Research, 15:4105–4143, 2014.

[21] L. P. Kaelbling, M. L. Littmann, and A. W. Moore.
Reinforcement learning: A survey. JAIR, 4:237–285,
1996.

[22] W. B. Knox and P. Stone. Combining manual
feedback with subsequent MDP reward signals for
reinforcement learning. In Proc. of the 9th Intl. Conf.
on AAMAS, pages 5–12, 2010.

[23] W. B. Knox and P. Stone. Reinforcement learning
from simultaneous human and MDP reward. In Proc.
of the 11th Intl. Conf. on AAMAS, pages 475–482,
2012.

[24] L. Kocsis and C. Szepesvári. Bandit based monte-carlo
planning. In ECML, volume 4212 of Lecture Notes in
Computer Science, pages 282–293. Springer, 2006.

[25] M. G. Lagoudakis and R. Parr. Least-squares policy
iteration. In Journal of Machine Learning Research,
volume 4, pages 1107–1149, 2003.

[26] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu,
J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller,
A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie,
A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. Wierstra, S. Legg, and D. Hassabis. Human-level
control through deep reinforcement learning. Nature,
518(7540):529–533, 02 2015.

[27] D. C. Montgomery, E. A. Peck, and G. G. Vining.
Introduction to Linear Regression Analysis (4th ed.).
Wiley & Sons, Hoboken, July 2006.

[28] A. Y. Ng and S. Russell. Algorithms for inverse
reinforcement learning. In Proc. of the 17th ICML,
2000.

[29] J. Pazis and R. Parr. PAC optimal exploration in
continuous space markov decision processes. In
Proceedings of the Twenty-Seventh AAAI Conference
on Artificial Intelligence, 2013.

[30] B. Price and C. Boutilier. Accelerating reinforcement
learning through implicit imitation. Journal of
Artificial Intelligence Research (JAIR), 19:569–629,
2003.

[31] M. T. Ronen I. Brafman. R-max - a general
polynomial time algorithm for near-optimal
reinforcement learning. Journal of Machine Learning
Research, pages 213–231, 2002.

[32] S. Ross, G. J. Gordon, and D. Bagnell. A reduction of
imitation learning and structured prediction to
no-regret online learning. In AISTATS, volume 15 of
JMLR Proceedings, pages 627–635. JMLR.org, 2011.

[33] W. D. Smart and L. P. Kaelbling. Effective

reinforcement learning for mobile robots. In ICRA,
2002.

[34] P. Stone, R. S. Sutton, and G. Kuhlmann.
Reinforcement learning for robocup soccer keepaway.
Adaptive Behaviour, 13(3):165–188, 2005.

[35] A. L. Strehl and M. L. Littman. An analysis of
model-based interval estimation for markov decision
processes. Journal of Computer and System Sciences,
74(8):1309–1331, 2008.

[36] R. Sutton and A. Barto. Reinforcement learning: an
introduction. Adaptive computation and machine
learning. MIT Press, 1998.

[37] C. Szepesvári. Algorithms for Reinforcement Learning.
Synthesis Lectures on Artificial Intelligence and
Machine Learning. Morgan & Claypool Publishers,
2010.

[38] M. Taylor, H. B. Suay, and S. Chernova. Integrating
reinforcement learning with human demonstrations of
varying ability. In Proc. of the Intl. Conf. on AAMAS,
pages 617–624, 2011.

[39] G. Tesauro. Temporal difference learning and
td-gammon. Communications of the ACM,
38(3):58–68, Mar. 1995.

