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Abstract

In this report, two systems have been developed for robot behavior acquisi-
tion using kinesthetic demonstrations. The first enables a humanoid robot
to imitate constrained reaching gestures directed towards a target using a
learning algorithm based on Gaussian Mixture Regression. The imitation
trajectory can be reshaped in order to satisfy the constraints of the task
and it can adapt to changes in the initial conditions and to target displace-
ments occurring during the movement execution. The second is focused on
behavior learning and walk-gait optimization by simulation using Swarm
Intelligence. The fitness of each swarm particle is evaluated using a sim-
ulator until the expected behavior is reproduced and then tested on the
real robot. The potential of these methods is evaluated using experiments
involving Aldebaran’s Nao humanoid robot and Fawkes, an open source
robot software by the KBSG at RWTH University.
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Chapter 1

Introduction

1.1 Motivation

To teach the robot new behaviors without extensive programming.

There are a number of issues that persist in Learning by Imitation, where
we are searching for a generic approach to the transfer skills across vari-
ous agents and situations. These issues have been formulated into a set
of generic questions, what-to-imitate, how-to-imitate, when-to-imitate and
who-to-imitate. A large body of work [1] focuses on sequencing and decom-
posing complex tasks into known sets of actions, performable by both the
demonstrator and the imitator. A recent approach aims at extracting and
encoding low-level features, e.g. primitives of motion in joint space, and
makes only weak assumptions as to the form of the primitives or kernels
used to encode the motion.

In this work different demonstrations of the same task are performed and two
methods are used to extract important aspects of that task - a probabilis-
tically based estimation of relevance and an optimization based estimation.
The former provides a continuous representation of the constraints, given
by a time-dependent covariance matrix, which can be used to decompose,
generalize and reconstruct gestures. The latter explores and exploits the
search space using intelligent swarms until the gesture is appropriately re-
constructed.

As humanoid robots are endowed with a large number of sensors and actu-
ators, the information contained within the dataset collected by the robot
is often redundant and correlated. Through the use of optimization and
mixture models, our system finds a suitable representation of the data for
continuous data. In our work we use a generic framework which allows for
the extraction of a time-dependent continuous representation of the con-
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straints. The model extracts a continuous representation of the constraints
with local information on variations and correlations across the variables. It
thus provides a localized, efficient, and generic description of the important
aspects of the task.

Therefore the question we are trying to answer is how to efficiently teach
behaviors to robot systems such that they are able to act in new unseen
circumstances with minimal user interaction. To this end, we have designed
a system where the user manually controls the robot’s end effectors in order
to demonstrate the required behavior. This process takes place for various
new positions until we are able to arrive at generalized dataset that functions
well given new circumstances.

1.2 Contents

Chapter 2 discusses Task Space Learning using Gaussian Mixture Regres-
sion. It describes each component of the algorithm along with results pre-
sented for 2D mouse task demonstrations and 3D robot demonstrations.

Chapter 3 deals with Behavior Learning using Swarm Intelligence. The
algorithm used is based on Particle Swarm Optimization. The general algo-
rithm is presented with adaptations for some real world scenarios.

Chapter 4 gives the Conclusion and Acknowledgements. This followed by
an Appendix which contains a list and purpose of the computer programs
used for this project.
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Chapter 2

Task Space Behavior
Learning using GMR

Every behavior that we are trying to teach the robot is broken down in a set
of reaching tasks. For example, it can be thought of as a behavior where the
robot has to go from state A to B and finally to C. The constraints associated
with such a task can be ’how to switch across A, B and C’, ’how to ensure
the correct order’, ’what is time frame involved in changing states’ and so
on. These constraints are extracted for multiple demonstrations of the same
task and then generalized. Taking the constraints into account, the gener-
alized version serves to perform the behavior given new states of A, B and C.

This chapter describes how we perform the input demonstrations for the
required behavior and use them to extract the task constraints. The task
constraints are generalized using Gaussian Mixture Models [4] and the pa-
rameters of which are used to reproduce a trajectory given new positions of
the various system objects.

2.1 System Inputs

2.1.1 Kinesthetic Demonstrations

The Nao humanoid robot shown in Fig 2.1 was used to validate our experi-
ments. For behavior acquisition [5], the user decides which end effectors of
the robot will be used. This can be the head, right/left arm or right/left
leg or a combination of them. The extent of control is limited by the users
capabilities to control multiple robot chains at the same time. Once decided,
their stiffness is set to a value that allows free movement. This is achieved
using Fawkes [10], an open source robot software.

Fawkes allows the user to control the various motion, vision and commu-
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Figure 2.1: Aldebaran’s Nao Humanoid Robot with its various Degrees of
Freedom

nication components of the robot. It uses plugins to load and unload these
components based on our needs. A list and purpose of each program/plugin
used has been detailed in the Appendix. With the naomotion plugin en-
abled, we start the saveservo plugin and the user manually controls the
chain in the way required. For example, the user moves the robotic arm
towards a cup and then carries it towards the saucer. During the demon-
stration, the saveservo plugin simply stores the raw servo data of the robot
to a text file. In this case it will form a dataset with each row having 22
Dimensions. Having stored the behavior, we run the savepos plugin. This
re-performs the demonstration and this time it stores a 6D vector that con-
tains the position and orientation of the end effector. A screenshot of the
Fawkes GUI is shown in Fig 2.2.

Figure 2.2: Screenshot of Fawkes GUI to enable plugins and control stiffness
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2.1.2 Task Constraints

Given a behavior, it is necessary for us to describe the constraints [3] asso-
ciated with it in order to better reproduce the task. Take for example, the
mouse task shown in Fig 2.3. The question is how do we define constraints

Figure 2.3: Mouse task - Mouse starting from random position has go to
the File and move it to the Bin

for such a task. This can be achieved by calculating the relative positions of
the mouse with respect to the file and bin. Consider a set of 4 demonstra-
tions shown in Fig 2.4. These demonstrations were given in an incremental
manner [6]. The highlighted portions show the different positions of the

Figure 2.4: A set of 4 demonstrations of the Mouse Task with the positions
of the Mouse, File and Bin highlighted.

mouse, file and bin. Given this dataset, we calculate the relative distance
to extract the constraints. From the demonstrations, we can see that it is
necessary for them to be close to each other as the degree of variability is
limited. The constraints are shown in Fig 2.5. The highlighted sections show
us the sample points where the mouse reaches the file and bin respectively.
Therefore at these points the x,y distance coordinates are zero. This Mouse
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(a) X coordinate position of Mouse
relative to the File

(b) Y coordinate position of Mouse
relative to the File

(c) X coordinate position of Mouse
relative to the Bin

(d) Y coordinate position of Mouse
relative to the Bin

Figure 2.5: Task Constraints for the Mouse Task

task can be extended to a number of scenarios and domains, like robot soc-
cer, obstacle avoidance etc. Given these constraints, we sample them and
generalize them using Gaussian Mixture Models.

2.2 Gaussian Mixture Regression

A probabilistic representation of the sampled, temporally aligned constraint
data is used to estimate the variations and correlations across the variables,
allowing a localized characterization of the different parts of the gesture.
Mixture modeling is a popular approach for density approximation of con-
tinuous data. A mixture model of K components is defined by a probability
density function [3]:

p(εj) =
K∑
k=1

p(k)p(εj |k) (2.1)

where εj is the input dataset, K is the number of Gaussian Components,
p(k) the Priors and p(εj |k) is the Gaussian function represented by

1√
(2π)D|Σk|

e−1/2((εj−µk)T Σ−1
k (εj−µk))
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From the above equation, we need to calculate the mean µk, covariance ma-
trices Σk and priors p(k).

Maximum Likelihood Estimation of the mixture parameters is performed
iteratively using the standard Expectation- Maximization (EM) algorithm.
EM is a simple local search technique that guarantees monotone increase
of the likelihood of the training set during optimization. The algorithm re-
quires an initial estimate, and to avoid getting trapped into a poor local
minima a rough k-means clustering technique is first applied to the data.
The Gaussian parameters are then derived from the clusters found by k-
means. This can be shown in Fig 2.6. Having estimated the Gaussian
Parameters, Fig 2.7, the next step is to reproduce new trajectories. We
perform Gaussian Mixture Regression for this purpose.

Figure 2.6: Extracting the Mean, Covariance, Priors (GMM Parameters)
from the Task Constraints

Figure 2.7: Task Constraints on the left have been generalized and repre-
sented as Gaussian Models on the right
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The basis of Regression is to estimate the conditional expectation of Y given
X on the basis of a set of observations (X,Y ). Consecutive temporal values
are used as query points and the corresponding spatial values are estimated
through regression. In our case, X Time sample, Y Cartesian coordinates
[2] and [3]. Therefore given time samples as input data, the Regression
algorithm outputs a smooth generalized version of the observed trajecto-
ries encoded in the GMM shown in Fig 2.8. It should be noted that it is
not equivalent to taking the mean and variance of the data at each time
step, which would produce jerky trajectories and increase dramatically the
amount of parameters (the mean and variance values would be kept in mem-
ory for each time step). With a probabilistic model, only the means and
covariance matrices of the Gaussians are kept in memory.

Figure 2.8: Regressed Model of the Generalized data

2.3 Trajectory Reproduction

The Regressed Model that has been obtained is the generalized version of
the Relative positions of the File and Bin with respect to the Mouse (Task
Constraints). This is shown in Fig 2.9. Given new positions of the Mouse,
File and Bin, we must reconstruct the required trajectory. Using the GMM
parameters, the reconstruction [7] is performed using the equation below [3]:

x
(n)
j+1 = (o(n) + x̂

(n)
j+1)− xj (2.2)

where j represents the temporal steps, xj is the position of the robot end
effector at step j, o(n) is the position of the object and n is the number of
system objects.
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(a) GMR in Task Space, relative to File (b) GMR in Task Space, relative to Bin

Figure 2.9: Gaussian Mixture Regressed representations with respect to
System Objects

2.4 Experiments and Results

After performing the steps mentioned in the previous sections, we validate
our algorithm using 2D Mouse task and 3D robot experiments.

Figure 2.10: This experiment contains a set of 3 demonstrations of the mouse
task. The red line indicates the reproduced trajectory for new positions of
the mouse, file and bin (indicated by the + signs). We can see the system
has produced a acceptable trajectory which passes very close to the new
positions.
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Figure 2.11: Results for a mouse task with 4 demonstrations and new start-
ing positions.

Figure 2.12: Shows the adaptability of the system to changes in the positions
during execution of the trajectory. By changing the position of the file, the
system is able to account for the new position.
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Figure 2.13: By changing the position of the bin in the very last time step,
the system is able to account for the new position.

Figure 2.14: A 2D Obstacle Avoidance Task
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Figure 2.15: A 2D Obstacle Avoidance Task with a new Obstacle height and
angle

Figure 2.16: A 3D demonstration with the Nao of an arm to object to goal
task.
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Figure 2.17: Obstacle Avoidance for the Nao after training it for 5,8,12 and
15cm heights. It was tested with 10cm

2.4.1 Observations

Choice of Gaussian Components

From the Fig 2.18 and Fig 2.19, we see that when choosing K=3, the re-
gressed model becomes to narrow and constricted and therefore may not
lead to accurate results in all positions. However, changing K=2 produces
a regressed model that accounts for those demonstrations also.

Choice of Demonstrations

It is important to keep the demonstrations similar or reasonably close to
each other, otherwise the GMM will not be able to generalize the dataset
if there is large variation shown in Fig 2.20. If such a gap exists, more
demonstrations should be performed focusing on those areas.

2.5 Limitations

There are four main limitations associated with the present implementation
of the algorithm -

Task Space Constraints alone do not satisfy the Accuracy required. This
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Figure 2.18: GMR in Task Space,
relative to File.

Figure 2.19: GMR in Task Space,
relative to Bin.

Figure 2.20: 2D Demonstrations with new Positions
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means that it is not enough to only generalize the coordinate positions of
the objects, better accuracy can be acquired by taking the joint space con-
straints in account.

Every Object in the System has to be defined by 6 Dimensions. As we
are using Task Space constraints and working with the Nao robot, every
object needs a 3D position and 3D orientation. This maybe to difficult to
calculate and the present solution seems to be to manually take the arm/leg
to destination position and register the coordinates and orientation.

A discrete trajectory is reproduced which may contain sharp turns. Less
frequently, the algorithm tries to follow the path of the demonstrations al-
ready shown, in this attempt it sometimes creates sharp turns and jerky
movements. This may harm the servo motors of the robot.

Offline Processing. In the present state, the object positions and other
coordinates is acquired offline and not online via the camera module. This
is yet to be integrated.

Overcome the Limitations

Use of Forward and Inverse Kinematics Model allows you to employ Joint
Constraints and do away with 6D object coordinates.

Use of a Vision System allows positions to be automatically registered.
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Chapter 3

Behavior Learning via
Simulation using Swarm
Intelligence

3.1 Introduction

This chapter briefly describes an imitation learning system based on kines-
thetic interactions between a human and a robot and the use of Particle
Swarm Optimization as a learning technique. This type of interaction is
supported by a simulation engine (Webots). The demonstrations with the
robot are used to create a low-dimensional posture space from which control
points are acquired. These control points are used to define the behavior
and this allows for fast imitation learning.

3.2 Behavioral Control Points

Suppose there is a new behavior to be learnt like kicking at an angle, get-
ting up while lying down on the back, strafing etc It is difficult to manu-
ally hard-code such a behavior. To overcome this, the user kinesthetically
demonstrates it as shown in Chapter 2, manually control the end effectors
as desired and having acquired the raw servo data, we convert it to a low-
dimensional posture space using Principal Component Analysis.

3.2.1 Principal Component Analysis

PCA [10] is a multivariate procedure which rotates the data such that max-
imum variabilities are projected onto the axes. It is used to reduce the
dimensionality of a data set while retaining as much information as is pos-
sible. Set of correlated variables are transformed into a set of uncorrelated
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variables which are ordered by reducing variability. These uncorrelated vari-
ables are linear combinations of the original variables, and the last of these
variables can be removed with minimum loss of real data. Therefore it
computes a compact and optimal description of the data set. We use the
Eigen-decomposition method to acquire the principal components. After
performing the necessary computations, a plot of first and second principal
components in shown in Fig 3.1. Having acquired the components, we select

Figure 3.1: Plot of first and second Principal Components

control points [8] from the 3D plot of the components along with the time
axis. Specific points are selected from this Trajectory as points which show
a change in direction. This is shown in Fig 3.2. Now therefore the entire
behavior can be described by using these Control Points alone. It is with
these points that the optimization learning algorithm is initiated.

3.3 Particle Swarm Optimization

Particle Swarm Optimization[11] is a stochastic, population-based computer
algorithm modeled on swarm intelligence that finds a solution to an opti-
mization problem in a search space in the presence of objectives. A problem
is given, and some way to evaluate a proposed solution to it exists in the
form of a fitness function. A population of individuals known as the particles
is defined randomly and they behave as potential solutions. The particles
iteratively evaluate the fitness of the candidate solutions and remember the
location where they had their best success. The swarm is typically modeled
by particles in multidimensional space that have a position and a veloc-
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Figure 3.2: 3D plot of components and time axis along with selected control
points

ity. These particles fly through hyperspace and have two essential reasoning
capabilities: their memory of their own best position and knowledge of the
global best. Members of a swarm communicate these positions to each other
and adjust their own position and velocity based on these good positions.

So a particle has the following information to make a suitable change in
its position and velocity: A global best that is known to all, the local best
and an update of the particle position and velocity. A simple representation
is shown in Fig 3.3. The blue sphere has a random position and velocity and
it is evaluating its fitness to try to get to the red sphere and maintaining
its best fitness and the global fitness. In our case, each particle is initiated
with random perturbations of the control points and with random velocities.
Iteratively these values are updates, their fitness value assigned until they
all converge to a global best.

3.4 Fitness Evaluation using Webots Simulator

In order to assess the fitness of a particle, we use the Webots Simulator. The
Nao template allows us to provide raw servo data and the simulator robot
reacts accordingly. At each iterative step, for every particle, the control
points are reversed to obtain the raw servo data. This is done by interpola-
tion followed by inverse PCA to acquire the original data space. This is then
fed into the simulator program which then performs the behavior. Depend-
ing on how well it performs the behavior, the user assigns a fitness value.
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Figure 3.3: Representation of a particle with random positions and velocities
exploring and exploiting for the optimized solution

For example, if the behavior is to stand up while lying down, the fitness
value can be assigned as the height of the head. Higher the head, greater
the fitness, if the Nao falls down a fitness of zero is given. We tested with
an experimental roll-over behavior. We demonstrated a task where the Nao

Figure 3.4: Modified Control Points after optimizing

had to roll over from its back to lie on its front. First we played the demon-
strated behavior in the simulator and it was clear that the Nao was unable
to reproduce the task. We then initialized 3 particles and 10 iterations and
thus performed 30 simulations, every step we assigned fitness values. At the
end, we acquired the modified control points shown in Fig 3.4. These were
then transferred to the real Nao and we find that it was able to learn to
roll-over. Overall this method may at first appear to be a random search
but given the right number of particles and iterations, it forms a balance
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between Exploration and Exploitation.

3.5 Extension to Walk Gait Optimization

For all humanoid robots, the most important behavior is the ability to walk
accurately and efficiently. After much research, several parameters have
been defined that control the basic walk of the Humanoid. These are re-
ferred to as the walk parameters [12], which are [Step-Length, Step-Height,
Step-Turn, Hip-Compensation, ZMP-Forward...].

Given our algorithm, particles can be initialized with random perturba-
tions of these values and the swarm optimization can be started. For the
Fitness Value, each Particles parameters are tested on the real robot and
the fitness is given either by the distance covered or the time a set distance
has been covered. This experiment was not implemented, but the algorithm
indicates it may result in positive results.
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Chapter 4

Conclusion

In the project, two methods were presented.

The first is a probabilistic framework that automatically extracts the es-
sential features characterizing a skill by handling constraints in task space.
The method was validated in three experiments in which the Nao robot was
taught simple behavioral tasks through kinesthetics. This allows the user to
embody the robot’s body and thus, this way, the correspondence problem
can be simplified. It was then demonstrated that the GMM approach could
be applied successfully to learn generically new behavioral skills at a trajec-
tory level by generalizing over several demonstrations and by extending the
learned skills to new positions of objects. Further work will focus on build-
ing a generic forward and inverse kinematics model that would allow Joint
Space Constraints to be accounted for during trajectory reproduction. The
second improvement is focussed on making use of a Vision System allows
positions of system objects to be automatically registered. An additional
improvement could involve the use of dimensionality reduction techniques
such as Principal Component Analysis to pre-process the data, and to ex-
tend the metric and associated optimization paradigm in this latent space
of lower dimensionality.

The second method demonstrated an optimization technique which if prop-
erly supported by robot simulators allows the robot to learn behaviors. A
preprocessing step using PCA was performed which is followed by extraction
of control points. The PSO algorithm was initiated with these points and
with the help of the Webots simulator, the behavior learning simple exper-
iments showed positive results. The algorithm can be extended to a variety
of tasks. Further improvements will focus on speeding up the algorithm
over traditional approaches. Although the algorithm takes a lot of time, it
depends on the users requirement for exploration and exploitation.
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Appendix A

Computer programs

saveservo

A Fawkes plugin. It is used to store the servo data of the Nao robot
to a text file in the tmp folder on the robot. When the user is performing
the kinesthetic demonstrations, this plugin is switched on and it is turned
off after the demonstration is done.

savepos

A Fawkes plugin. It is used to store the position and orientation of the end
effector. After the user has stored the servo data, this plugin is switched on.
It performs the same demonstration again but this time stores a 6D vector
to a text file in the tmp folder.

walkdemo

A Fawkes plugin. It is used to perform the demonstration as described
by a text file in the tmp folder. The plugin reads the servo data from the
text file and converts it to actuator actions on the Nao.

gmm-2d

A Matlab program. It implements the GMM algorithm for the 2D mouse
task example. It contains sub programs that allow the user to provide
demonstrations, generalize the data and reconstructs the trajectory.

gmm-nao

A Matlab program. It implements the GMM algorithm for the Nao. It
contains sub programs that read the text file containing the position and
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orientation, generalizes the data and reconstructs the trajectory.

pso-nao

A Matlab program. It performs multi-dimensional particle swarm opti-
mization for Nao behavior learning. It contains sub programs that read text
files, perform PCA and writes files to be read by the simulator.
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